UHPLC-QTOF-MS/MS profiling, molecular networking, and molecular docking analysis of Gliricidia sepium (Jacq.) Kunth. ex. Walp. stem ethanolic extract and its gastroprotective effect on gastritis in rats

Q1 Environmental Science
Aya A. Wafaey , Seham S. El-Hawary , Osama G. Mohamed , Sahar S. Abdelrahman , Alaa M. Ali , Ahmed A. El-Rashedy , Mohamed F. Abdelhameed , Farid N. Kirollos
{"title":"UHPLC-QTOF-MS/MS profiling, molecular networking, and molecular docking analysis of Gliricidia sepium (Jacq.) Kunth. ex. Walp. stem ethanolic extract and its gastroprotective effect on gastritis in rats","authors":"Aya A. Wafaey ,&nbsp;Seham S. El-Hawary ,&nbsp;Osama G. Mohamed ,&nbsp;Sahar S. Abdelrahman ,&nbsp;Alaa M. Ali ,&nbsp;Ahmed A. El-Rashedy ,&nbsp;Mohamed F. Abdelhameed ,&nbsp;Farid N. Kirollos","doi":"10.1016/j.toxrep.2025.101944","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic profiling of the crude ethanolic extract of <em>Gliricidia sepium</em> (Jacq.) Kunth. ex. Walp. stem ethanolic extract (GSS) was conducted using ultra-high performance quadrupole time of flight mass spectrometry/mass spectrometry (UHPLC-QTOF-MS/MS) in negative mode, resulting in the identification of 23 compounds belonging to various classes such as flavonoids, fatty acids, triterpenoid saponins, and phenolic acids. Notably, eight flavonoids including kaempferol-3-<em>O</em>-robinoside-7-<em>O</em>-rhamnoside, isoquercitrin, kaempferol-3-<em>O</em>-rutinoside, apigenin-7-glucoside, kaempeferol-7-<em>O</em>-rhamnoside, luteolin, apigenin, and liquiritigenin, along with two phenolic acids (4-hydroxycinnamic acid and 2-hydroxyhydrocinnamic acid) and four triterpenoid saponins (soyasaponin I, soyasaponin II, soyasaponin III, and kaikasaponin III) were dereplicated. Additionally, nine fatty acid derivatives were identified, including azelaic acid and 2-isopropyl malic acid. Molecular networking analysis revealed the formation of clusters among compounds while others do not form clusters. Further analysis indicated that the GSS ethanolic extract exhibited a total phenolic content of 38.78 ± 1.609 µg of gallic acid equivalent/mg and a total flavonoid content of 5.62 ± 0.50 µg of rutin equivalent/mg. Biological evaluations showed that GSS ethanolic extract mitigated gastric tissue injury induced by pyloric ligation, with a notable reduction in oxidative stress marker reactive oxygen species levels and inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha levels. Additionally, it enhanced superoxide dismutase and inhibitor of nuclear factor kappa B alpha levels, while lowering the expression of inducible nitric oxide synthase. Histopathological examination revealed significant improvements in gastric tissue morphology in GSS-treated groups compared to the control group. Molecular docking studies indicated potential interactions between GSS ethanolic extract compounds and various target proteins involved in oxidative stress, inflammation, and gastric protection in gastritis. This study aims to investigate the potential gastroprotective activity of GSS ethanolic extract against gastritis induced via pyloric ligation.</div></div>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"14 ","pages":"Article 101944"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214750025000629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic profiling of the crude ethanolic extract of Gliricidia sepium (Jacq.) Kunth. ex. Walp. stem ethanolic extract (GSS) was conducted using ultra-high performance quadrupole time of flight mass spectrometry/mass spectrometry (UHPLC-QTOF-MS/MS) in negative mode, resulting in the identification of 23 compounds belonging to various classes such as flavonoids, fatty acids, triterpenoid saponins, and phenolic acids. Notably, eight flavonoids including kaempferol-3-O-robinoside-7-O-rhamnoside, isoquercitrin, kaempferol-3-O-rutinoside, apigenin-7-glucoside, kaempeferol-7-O-rhamnoside, luteolin, apigenin, and liquiritigenin, along with two phenolic acids (4-hydroxycinnamic acid and 2-hydroxyhydrocinnamic acid) and four triterpenoid saponins (soyasaponin I, soyasaponin II, soyasaponin III, and kaikasaponin III) were dereplicated. Additionally, nine fatty acid derivatives were identified, including azelaic acid and 2-isopropyl malic acid. Molecular networking analysis revealed the formation of clusters among compounds while others do not form clusters. Further analysis indicated that the GSS ethanolic extract exhibited a total phenolic content of 38.78 ± 1.609 µg of gallic acid equivalent/mg and a total flavonoid content of 5.62 ± 0.50 µg of rutin equivalent/mg. Biological evaluations showed that GSS ethanolic extract mitigated gastric tissue injury induced by pyloric ligation, with a notable reduction in oxidative stress marker reactive oxygen species levels and inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha levels. Additionally, it enhanced superoxide dismutase and inhibitor of nuclear factor kappa B alpha levels, while lowering the expression of inducible nitric oxide synthase. Histopathological examination revealed significant improvements in gastric tissue morphology in GSS-treated groups compared to the control group. Molecular docking studies indicated potential interactions between GSS ethanolic extract compounds and various target proteins involved in oxidative stress, inflammation, and gastric protection in gastritis. This study aims to investigate the potential gastroprotective activity of GSS ethanolic extract against gastritis induced via pyloric ligation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信