Crack propagation and CT imaging of internal cracks in rocks damaged by pre-compression under explosive loading

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Qiangqiang Zheng , Pingfeng Li , Ying Xu , Bing Cheng , Hao Hu , Hao Shi , Shoudong Xie
{"title":"Crack propagation and CT imaging of internal cracks in rocks damaged by pre-compression under explosive loading","authors":"Qiangqiang Zheng ,&nbsp;Pingfeng Li ,&nbsp;Ying Xu ,&nbsp;Bing Cheng ,&nbsp;Hao Hu ,&nbsp;Hao Shi ,&nbsp;Shoudong Xie","doi":"10.1016/j.asej.2025.103302","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dynamic crack propagation mechanism in damaged rocks under blasting excavation in complex geological conditions. A novel rock fracture analysis method based on pre-compression-induced random damage is proposed, overcoming the limitations of traditional prefabricated crack models. Innovatively, multi-level cyclic static pre-compression is applied to simulate the random damage distribution in engineering-scale rocks, combined with high-resolution computed tomography (CT) imaging to achieve non-destructive 3D visualization of internal crack morphologies under explosive loading. A theoretical model for predicting blast-induced crack propagation radius in damaged sandstone is established and validated through integrated laboratory blast experiments, CT scanning, and PFC-2D numerical simulations, demonstrating a prediction error margin below 5%. Key findings reveal a significant positive correlation between sandstone damage levels and the expansion range of blast-induced cracks as well as crater dimensions. The pre-existing crack network in damaged rocks effectively guides gas wedging effects, unveiling a “weakening-synergistic fracturing” dual mechanism. These results provide theoretical foundations and technical support for optimizing blasting parameters and mitigating dynamic disasters in tunnel engineering under complex geological settings.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103302"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000437","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the dynamic crack propagation mechanism in damaged rocks under blasting excavation in complex geological conditions. A novel rock fracture analysis method based on pre-compression-induced random damage is proposed, overcoming the limitations of traditional prefabricated crack models. Innovatively, multi-level cyclic static pre-compression is applied to simulate the random damage distribution in engineering-scale rocks, combined with high-resolution computed tomography (CT) imaging to achieve non-destructive 3D visualization of internal crack morphologies under explosive loading. A theoretical model for predicting blast-induced crack propagation radius in damaged sandstone is established and validated through integrated laboratory blast experiments, CT scanning, and PFC-2D numerical simulations, demonstrating a prediction error margin below 5%. Key findings reveal a significant positive correlation between sandstone damage levels and the expansion range of blast-induced cracks as well as crater dimensions. The pre-existing crack network in damaged rocks effectively guides gas wedging effects, unveiling a “weakening-synergistic fracturing” dual mechanism. These results provide theoretical foundations and technical support for optimizing blasting parameters and mitigating dynamic disasters in tunnel engineering under complex geological settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信