{"title":"On the deep carbon cycle in numerical modelling of mantle convection: Implications for the long-term climate evolution","authors":"Takashi Nakagawa","doi":"10.1016/j.pepi.2025.107321","DOIUrl":null,"url":null,"abstract":"<div><div>A model of deep-water and carbon cycles was developed to elucidate the mechanisms governing the carbon cycle in Earth's deep interior. This model integrates the solubility limit of carbon in mantle rocks into numerical simulations of mantle convection. To account for the total carbon released from the deep interior, I considered both the carbon release flux through metamorphic decarbonization during subduction and the outgassing fluxes at mid-ocean ridges and hotspots. Additionally, the model assumes a carbon solubility of 1.0 wt% at the top of the mantle transition zone. The carbon budget within Earth's deep interior appears nearly balanced by the carbon uptake during subduction and the decarbonization of the subducting slab through metamorphic reactions. This study also suggests that a warmer climate is likely if the carbon release flux from the deep interior comprises both decarbonization and volcanic outgassing. Therefore, an Earth-like climate may be sustained by the carbon release associated with plate subductions. It is acknowledged that this study presents a case study of carbon cycle modelling in mantle convection simulations, with a specific emphasis on the integration of carbon solubility limits in mantle rocks based on the carbon solubility model in mantle minerals.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"360 ","pages":"Article 107321"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920125000159","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A model of deep-water and carbon cycles was developed to elucidate the mechanisms governing the carbon cycle in Earth's deep interior. This model integrates the solubility limit of carbon in mantle rocks into numerical simulations of mantle convection. To account for the total carbon released from the deep interior, I considered both the carbon release flux through metamorphic decarbonization during subduction and the outgassing fluxes at mid-ocean ridges and hotspots. Additionally, the model assumes a carbon solubility of 1.0 wt% at the top of the mantle transition zone. The carbon budget within Earth's deep interior appears nearly balanced by the carbon uptake during subduction and the decarbonization of the subducting slab through metamorphic reactions. This study also suggests that a warmer climate is likely if the carbon release flux from the deep interior comprises both decarbonization and volcanic outgassing. Therefore, an Earth-like climate may be sustained by the carbon release associated with plate subductions. It is acknowledged that this study presents a case study of carbon cycle modelling in mantle convection simulations, with a specific emphasis on the integration of carbon solubility limits in mantle rocks based on the carbon solubility model in mantle minerals.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.