Mast cell activators as adjuvants for intranasal mucosal vaccines

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Connor T. Murphy , Eric M. Bachelder , Kristy M. Ainslie
{"title":"Mast cell activators as adjuvants for intranasal mucosal vaccines","authors":"Connor T. Murphy ,&nbsp;Eric M. Bachelder ,&nbsp;Kristy M. Ainslie","doi":"10.1016/j.ijpharm.2025.125300","DOIUrl":null,"url":null,"abstract":"<div><div>Mast cells have roles in immune regulation, allergy, and host response to pathogens. Compounds that activate mast cells (MCAs) can serve as vaccine adjuvants, potentially outperforming current FDA-approved options, especially for mucosal vaccines. While most vaccines are administered intramuscularly, intranasal and needle-free formulations offer benefits like improved compliance and accessibility. However, the lack of effective adjuvants limits mucosal vaccine development. This review explores MCAs as promising alternatives to traditional adjuvants, aiming to enhance mucosal vaccine efficacy. We summarize the nascent work of formulating MCAs like compound 48/80 into nanoparticles, with excipients such as chitosan and chitosan/alginate. Other MCAs like the peptide mastoparan 7 complexed with CpG have formed nanoparticle complexes that illustrate protective mucosal immunity in a model of influenza. The small molecule MCA ST101036, when encapsulated in acetalated dextran particles, has demonstrated enhanced immune responses and protection in a West Nile Virus model of infection. This review highlights the potential of MCAs as potent vaccine adjuvants, particularly for mucosal vaccines, and summarizes, recent advancements in formulating these activators into nanoparticles to enhance immune responses and protection.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125300"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732500136X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Mast cells have roles in immune regulation, allergy, and host response to pathogens. Compounds that activate mast cells (MCAs) can serve as vaccine adjuvants, potentially outperforming current FDA-approved options, especially for mucosal vaccines. While most vaccines are administered intramuscularly, intranasal and needle-free formulations offer benefits like improved compliance and accessibility. However, the lack of effective adjuvants limits mucosal vaccine development. This review explores MCAs as promising alternatives to traditional adjuvants, aiming to enhance mucosal vaccine efficacy. We summarize the nascent work of formulating MCAs like compound 48/80 into nanoparticles, with excipients such as chitosan and chitosan/alginate. Other MCAs like the peptide mastoparan 7 complexed with CpG have formed nanoparticle complexes that illustrate protective mucosal immunity in a model of influenza. The small molecule MCA ST101036, when encapsulated in acetalated dextran particles, has demonstrated enhanced immune responses and protection in a West Nile Virus model of infection. This review highlights the potential of MCAs as potent vaccine adjuvants, particularly for mucosal vaccines, and summarizes, recent advancements in formulating these activators into nanoparticles to enhance immune responses and protection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信