Fan Zhang , Meng Ni , Shupeng Tai , Bingfeng Zu , Fuqiang Xi , Yangyang Shen , Bowen Wang , Zhikun Qin , Rongxuan Wang , Ting Guo , Kui Jiao
{"title":"Machine learning assisted health status analysis and degradation prediction of aging proton exchange membrane fuel cells","authors":"Fan Zhang , Meng Ni , Shupeng Tai , Bingfeng Zu , Fuqiang Xi , Yangyang Shen , Bowen Wang , Zhikun Qin , Rongxuan Wang , Ting Guo , Kui Jiao","doi":"10.1016/j.apenergy.2025.125483","DOIUrl":null,"url":null,"abstract":"<div><div>Proton exchange membrane fuel cells (PEMFCs) represent a significant application scenario for hydrogen energy and an important sector in achieving net-zero carbon emission. Prognostics and health management are crucial for enhancing their durability and reducing maintenance costs. This study proposes a framework for health status analysis and degradation prediction of aging PEMFCs, addressing the challenge of accurately identifying internal parameter states faced by current life prediction methods. Six aging factors are incorporated into the developed PEMFC mechanism model to characterize its intricate degradation process. The variations in these factors over a 3750-h experimental period are then estimated using the Particle Filtering method. Results demonstrate a notable reduction in the electrochemical surface area, decreasing from 5.76 m<sup>2</sup> to 4.08 m<sup>2</sup>, accompanied by a significant increase in leakage current to nearly 6 A m<sup>−2</sup>. These findings indicate substantial degradation of both the catalyst layer and membrane. Furthermore, ionic and contact resistances have increased as a result of reduced membrane conductivity and bipolar plate corrosion, respectively. The mass transport capacity has diminished, leading to an elevated concentration loss within the cell. Subsequently, the Transformer model is employed to forecast future changes in the aging factors and realize the degradation prediction over the next 1000 h. The effectiveness of the proposed method is fully validated under various conditions, with the average prediction error less than 4 %, which demonstrates higher long-term prediction accuracy compared to previous studies. This study provides an effective framework for the health management of PEMFCs and facilitates their widespread commercialization.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925002132","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane fuel cells (PEMFCs) represent a significant application scenario for hydrogen energy and an important sector in achieving net-zero carbon emission. Prognostics and health management are crucial for enhancing their durability and reducing maintenance costs. This study proposes a framework for health status analysis and degradation prediction of aging PEMFCs, addressing the challenge of accurately identifying internal parameter states faced by current life prediction methods. Six aging factors are incorporated into the developed PEMFC mechanism model to characterize its intricate degradation process. The variations in these factors over a 3750-h experimental period are then estimated using the Particle Filtering method. Results demonstrate a notable reduction in the electrochemical surface area, decreasing from 5.76 m2 to 4.08 m2, accompanied by a significant increase in leakage current to nearly 6 A m−2. These findings indicate substantial degradation of both the catalyst layer and membrane. Furthermore, ionic and contact resistances have increased as a result of reduced membrane conductivity and bipolar plate corrosion, respectively. The mass transport capacity has diminished, leading to an elevated concentration loss within the cell. Subsequently, the Transformer model is employed to forecast future changes in the aging factors and realize the degradation prediction over the next 1000 h. The effectiveness of the proposed method is fully validated under various conditions, with the average prediction error less than 4 %, which demonstrates higher long-term prediction accuracy compared to previous studies. This study provides an effective framework for the health management of PEMFCs and facilitates their widespread commercialization.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.