{"title":"Non-destructive assessment of railway ballast fouling and water retention using infrared thermography and statistical processing","authors":"Mehdi Koohmishi , Yansong Gao , Guoqing Jing , Yunlong Guo","doi":"10.1016/j.conbuildmat.2025.140273","DOIUrl":null,"url":null,"abstract":"<div><div>Using infrared thermography (IRT) has been proven as an effective technology for early damage detection within the superstructure/substructure of the ballasted railway tracks. Performing statistical processing and integrating principle component analysis (PCA) underpinned by extensive data sources of infrared imaging technology can effectively detect complex features exhibiting temperature variation. The present study employs these processing techniques on thermal images to investigate the drainage health of railway ballast layer using IRT technology. Specifically, clean and clay-fouled ballast specimens are prepared to study the effect of contamination/fouling in ballast layer (porous granular media) on water retention (indicated by water level) during severe rainfall intensity. IRT is utilized to monitor the water level as the indicator of ballast layer drainage health condition. Results show that the IRT image-processing technology confirms the capability of IRT for detecting water surface/water retention based on the thermal images captured from ballast specimen surface. In addition, an appropriate time for monitoring via IRT is after heavy rainfall upon which the water retention in the ballast layer can be more effectively detected. Particularly, presence of water and fouling material among ballast particles results in lower and more uniform surface temperature compared to dry or clean ballast specimens.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"466 ","pages":"Article 140273"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825004210","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Using infrared thermography (IRT) has been proven as an effective technology for early damage detection within the superstructure/substructure of the ballasted railway tracks. Performing statistical processing and integrating principle component analysis (PCA) underpinned by extensive data sources of infrared imaging technology can effectively detect complex features exhibiting temperature variation. The present study employs these processing techniques on thermal images to investigate the drainage health of railway ballast layer using IRT technology. Specifically, clean and clay-fouled ballast specimens are prepared to study the effect of contamination/fouling in ballast layer (porous granular media) on water retention (indicated by water level) during severe rainfall intensity. IRT is utilized to monitor the water level as the indicator of ballast layer drainage health condition. Results show that the IRT image-processing technology confirms the capability of IRT for detecting water surface/water retention based on the thermal images captured from ballast specimen surface. In addition, an appropriate time for monitoring via IRT is after heavy rainfall upon which the water retention in the ballast layer can be more effectively detected. Particularly, presence of water and fouling material among ballast particles results in lower and more uniform surface temperature compared to dry or clean ballast specimens.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.