Effect of notch shape on the fracture toughness behavior

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Jiseung Lee , Wonjun Jo , Junseok Seo , Gyubaek An
{"title":"Effect of notch shape on the fracture toughness behavior","authors":"Jiseung Lee ,&nbsp;Wonjun Jo ,&nbsp;Junseok Seo ,&nbsp;Gyubaek An","doi":"10.1016/j.ijnaoe.2025.100646","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the effect of notch shape on the fracture toughness of a 500 MPa base material designed for liquefied carbon dioxide storage tanks. This study specifically focuses on assessing the crack tip opening displacement (CTOD) values for different notch shapes, including fatigue pre-cracks (R = 0.025 mm) and electrical discharge machining (EDM) notches (R = 0.07 mm and R = 0.15 mm). CTOD tests were conducted over a temperature range of −55 °C to −140 °C. The results revealed that as the notch radius increased, the degree of stress concentration decreased, leading to an increase in fracture toughness. In temperature-dependent tests, CTOD values consistently decreased as the temperature decreased, with EDM notches exhibiting a lower rate of fracture toughness reduction compared to fatigue pre-cracks, which is attributed to differences in the degree of stress concentration. Scanning electron microscopy analysis of the fracture surfaces revealed the reason for significant differences in CTOD values and fracture behaviors between fatigue pre-crack and EDM notches, particularly at −140 °C, a temperature below the ductile to brittle transition temperature. This study suggests that EDM notches, especially with radii of 0.07 mm and 0.15 mm, can effectively replace fatigue pre-cracks in CTOD evaluations, particularly at temperatures above the transition temperature, offering a more efficient method for assessing fracture toughness in cryogenic environments.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100646"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the effect of notch shape on the fracture toughness of a 500 MPa base material designed for liquefied carbon dioxide storage tanks. This study specifically focuses on assessing the crack tip opening displacement (CTOD) values for different notch shapes, including fatigue pre-cracks (R = 0.025 mm) and electrical discharge machining (EDM) notches (R = 0.07 mm and R = 0.15 mm). CTOD tests were conducted over a temperature range of −55 °C to −140 °C. The results revealed that as the notch radius increased, the degree of stress concentration decreased, leading to an increase in fracture toughness. In temperature-dependent tests, CTOD values consistently decreased as the temperature decreased, with EDM notches exhibiting a lower rate of fracture toughness reduction compared to fatigue pre-cracks, which is attributed to differences in the degree of stress concentration. Scanning electron microscopy analysis of the fracture surfaces revealed the reason for significant differences in CTOD values and fracture behaviors between fatigue pre-crack and EDM notches, particularly at −140 °C, a temperature below the ductile to brittle transition temperature. This study suggests that EDM notches, especially with radii of 0.07 mm and 0.15 mm, can effectively replace fatigue pre-cracks in CTOD evaluations, particularly at temperatures above the transition temperature, offering a more efficient method for assessing fracture toughness in cryogenic environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信