Norwogonin attenuates LPS-induced acute lung injury through inhibiting Src/AKT1/NF-κB signaling pathway

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Tianjiao Cao , An-Qing Li , Yi Zhang , Ting-Ting Xie , Ding-Zhou Weng , Chun-Shui Pan , Li Yan , Kai Sun , Di Wang , Jing-Yan Han , Jian Liu
{"title":"Norwogonin attenuates LPS-induced acute lung injury through inhibiting Src/AKT1/NF-κB signaling pathway","authors":"Tianjiao Cao ,&nbsp;An-Qing Li ,&nbsp;Yi Zhang ,&nbsp;Ting-Ting Xie ,&nbsp;Ding-Zhou Weng ,&nbsp;Chun-Shui Pan ,&nbsp;Li Yan ,&nbsp;Kai Sun ,&nbsp;Di Wang ,&nbsp;Jing-Yan Han ,&nbsp;Jian Liu","doi":"10.1016/j.phymed.2025.156432","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Acute lung injury (ALI) has emerged as a critical illness, with sepsis-related ALI accounting for &gt;80 %. In the context of bacterial infection, damage to the pulmonary microvascular barrier leads to inflammatory cell infiltration and plasma component extravasation into pulmonary interstitium. This disruption impairs gas exchange, resulting in hypoxemia. Norwogonin (NWG), a natural plant flavone, has shown potential anti-inflammatory and antioxidative effects. However, whether it could ameliorate sepsis-related ALI and the potential mechanism remains unknown.</div></div><div><h3>Purpose</h3><div>This study aims to investigate the effects and underlying mechanisms of NWG in treating sepsis-related ALI.</div></div><div><h3>Methods</h3><div>Male Wistar rats (200–220 g) were used to establish sepsis-related ALI model via intraperitoneal injection of lipopolysaccharide (LPS). Vital signs and arterial blood gas analysis, HE and immunohistochemistry staining, dynamic visualization of the microcirculatory system to observe FITC-dextran leakage and leukocyte adhesion, ELISA assay of inflammatory cytokines, Evans Blue extravasation, measurement of total protein content in bronchoalveolar lavage fluid, determination of the Wet/Dry weight ratio, Western blot and RT-qPCR analysis were used to evaluate NWG's effects and the potential mechanism. Additionally, we employed network pharmacology and molecular docking to identify and evaluate the interaction between NWG and the key targets of ALI. Surface plasmon resonance and enzyme activity assay were utilized to confirm the direct interaction between NWG and the potential targets.</div></div><div><h3>Results</h3><div>NWG administration improved the vital signs of LPS-stimulated rats. Exposure to LPS led to deteriorated arterial blood gas analysis, prominent lung morphology destruction, neutrophil and M1 macrophage infiltration, leukocyte adhesion, FITC-dextran leakage, elevated secretion of inflammatory cytokines, and aggravated lung edema. NWG intervention effectively mitigated these changes. Furthermore, NWG suppressed NF-κB/NLRP3 signaling and up-regulated endothelial junction proteins. Network pharmacology analysis and molecular docking identified five top key targets: MMP-9, AKT1, COX-2, Src and JAK-2. Western blot and RT-qPCR results confirmed that NWG inhibited the Src/AKT1/NF-κB signaling pathway, and down-regulated the levels of inflammatory factors. Surface plasmon resonance revealed the direct binding between NWG and AKT1, COX-2 and Src, rather than MMP-9. Enzyme activity assay demonstrated that NWG inhibited the activity of AKT1, COX-2 and Src.</div></div><div><h3>Conclusion</h3><div>NWG alleviated inflammation, restored pulmonary microvascular barrier function and improved LPS-induced ALI. These effects were mediated by inhibiting the Src/AKT1/NF-κB signaling pathway through direct targeting of Src, AKT1 and COX-2. Our study provided novel scientific evidence supporting the use of NWG in the treatment of ALI caused by sepsis.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"139 ","pages":"Article 156432"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S094471132500073X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Acute lung injury (ALI) has emerged as a critical illness, with sepsis-related ALI accounting for >80 %. In the context of bacterial infection, damage to the pulmonary microvascular barrier leads to inflammatory cell infiltration and plasma component extravasation into pulmonary interstitium. This disruption impairs gas exchange, resulting in hypoxemia. Norwogonin (NWG), a natural plant flavone, has shown potential anti-inflammatory and antioxidative effects. However, whether it could ameliorate sepsis-related ALI and the potential mechanism remains unknown.

Purpose

This study aims to investigate the effects and underlying mechanisms of NWG in treating sepsis-related ALI.

Methods

Male Wistar rats (200–220 g) were used to establish sepsis-related ALI model via intraperitoneal injection of lipopolysaccharide (LPS). Vital signs and arterial blood gas analysis, HE and immunohistochemistry staining, dynamic visualization of the microcirculatory system to observe FITC-dextran leakage and leukocyte adhesion, ELISA assay of inflammatory cytokines, Evans Blue extravasation, measurement of total protein content in bronchoalveolar lavage fluid, determination of the Wet/Dry weight ratio, Western blot and RT-qPCR analysis were used to evaluate NWG's effects and the potential mechanism. Additionally, we employed network pharmacology and molecular docking to identify and evaluate the interaction between NWG and the key targets of ALI. Surface plasmon resonance and enzyme activity assay were utilized to confirm the direct interaction between NWG and the potential targets.

Results

NWG administration improved the vital signs of LPS-stimulated rats. Exposure to LPS led to deteriorated arterial blood gas analysis, prominent lung morphology destruction, neutrophil and M1 macrophage infiltration, leukocyte adhesion, FITC-dextran leakage, elevated secretion of inflammatory cytokines, and aggravated lung edema. NWG intervention effectively mitigated these changes. Furthermore, NWG suppressed NF-κB/NLRP3 signaling and up-regulated endothelial junction proteins. Network pharmacology analysis and molecular docking identified five top key targets: MMP-9, AKT1, COX-2, Src and JAK-2. Western blot and RT-qPCR results confirmed that NWG inhibited the Src/AKT1/NF-κB signaling pathway, and down-regulated the levels of inflammatory factors. Surface plasmon resonance revealed the direct binding between NWG and AKT1, COX-2 and Src, rather than MMP-9. Enzyme activity assay demonstrated that NWG inhibited the activity of AKT1, COX-2 and Src.

Conclusion

NWG alleviated inflammation, restored pulmonary microvascular barrier function and improved LPS-induced ALI. These effects were mediated by inhibiting the Src/AKT1/NF-κB signaling pathway through direct targeting of Src, AKT1 and COX-2. Our study provided novel scientific evidence supporting the use of NWG in the treatment of ALI caused by sepsis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信