Study the effect of 2D particle shape and size on angle of repose using a new detection algorithm

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Tao Liu, Xiulun Wang, Tingting Wu, Halidi Ally
{"title":"Study the effect of 2D particle shape and size on angle of repose using a new detection algorithm","authors":"Tao Liu,&nbsp;Xiulun Wang,&nbsp;Tingting Wu,&nbsp;Halidi Ally","doi":"10.1016/j.apt.2025.104804","DOIUrl":null,"url":null,"abstract":"<div><div>The angle of repose (AoR) is a critical parameter characterising the flowability and friction properties of granular materials. The objective of this paper is to develop an image-based method for calculating the angle of repose and to analyse the relationship between particle micro-shape and the macro accumulation state. Six types of sand with different particle sizes were tested to determine their AoR values using the well-established fixed funnel method, and a fitting algorithm for sand pile boundary is proposed in this study. Further, a Lasso-based multiple regression model was developed that incorporates roundness and particle width as independent variables. The AoR results indicated that, among the various 2D shape indices, roundness exhibited the strongest correlation with AoR. In addition, the AoR values exhibited a monotonically decreasing trend with decreasing particle size. The AoR values were compared to the internal friction angles obtained from the same sand samples, and the correlation coefficient between the internal friction angle and the AoR was 0.898. This study demonstrates that there is a strong correlation between the internal friction angle and AoR of the dry sand tested in this study.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 3","pages":"Article 104804"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125000251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The angle of repose (AoR) is a critical parameter characterising the flowability and friction properties of granular materials. The objective of this paper is to develop an image-based method for calculating the angle of repose and to analyse the relationship between particle micro-shape and the macro accumulation state. Six types of sand with different particle sizes were tested to determine their AoR values using the well-established fixed funnel method, and a fitting algorithm for sand pile boundary is proposed in this study. Further, a Lasso-based multiple regression model was developed that incorporates roundness and particle width as independent variables. The AoR results indicated that, among the various 2D shape indices, roundness exhibited the strongest correlation with AoR. In addition, the AoR values exhibited a monotonically decreasing trend with decreasing particle size. The AoR values were compared to the internal friction angles obtained from the same sand samples, and the correlation coefficient between the internal friction angle and the AoR was 0.898. This study demonstrates that there is a strong correlation between the internal friction angle and AoR of the dry sand tested in this study.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信