Mesoscale modelling of RC beams without stirrups in shear failure using discrete element method

IF 4.7 2区 工程技术 Q1 MECHANICS
Xupeng Pan , Yizhen Wu , Pingming Huang , Yu Zhao , Yangguang Yuan , Yamin Sun
{"title":"Mesoscale modelling of RC beams without stirrups in shear failure using discrete element method","authors":"Xupeng Pan ,&nbsp;Yizhen Wu ,&nbsp;Pingming Huang ,&nbsp;Yu Zhao ,&nbsp;Yangguang Yuan ,&nbsp;Yamin Sun","doi":"10.1016/j.engfracmech.2025.110881","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the mesoscale failure behaviour of reinforced concrete (RC) beams without stirrups, a novel approach using discrete element method (DEM) is proposed for efficiently generation of mesoscale fracture numerical models of RC beams. In this method, the coarse aggregate, whose realistic shape determined by calling the ‘Aggregate Geometry Library’, is constructed using the crushable clustered particles method. Then, a soft bond model is introduced to represent the constitutive model of concrete. In addition, a new mesoscale contact model of hard bond model developed from soft bond model is used to capture the mechanical behaviour of steel bars. Based on the validated DEM model, a series of numerical simulations are conducted to investigate the shear failure behaviour of RC beams as well as the effects of shear-span ratio and elastic modulus of steel bars on the ultimate shear capacity. The results show that the microcracks in RC beams are commonly propagation along the interfacial transition zone (ITZ), whereas aggregate crushing is rarely observed. The number of microcracks in the ITZ component is accounting for 60% and increases slightly with increasing shear-span ratio, which largely contribute to the failure of the RC beams. According to the numerical simulation results, a Zsutty modified formula is proposed for shear capacity evaluation and the performance is validated by 150 tests in the experimental database. For the beams of shear-span ratios low than 2.5, the mean values and coefficient of variation are 1.13 and 26.7%, respectively.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"316 ","pages":"Article 110881"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425000827","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the mesoscale failure behaviour of reinforced concrete (RC) beams without stirrups, a novel approach using discrete element method (DEM) is proposed for efficiently generation of mesoscale fracture numerical models of RC beams. In this method, the coarse aggregate, whose realistic shape determined by calling the ‘Aggregate Geometry Library’, is constructed using the crushable clustered particles method. Then, a soft bond model is introduced to represent the constitutive model of concrete. In addition, a new mesoscale contact model of hard bond model developed from soft bond model is used to capture the mechanical behaviour of steel bars. Based on the validated DEM model, a series of numerical simulations are conducted to investigate the shear failure behaviour of RC beams as well as the effects of shear-span ratio and elastic modulus of steel bars on the ultimate shear capacity. The results show that the microcracks in RC beams are commonly propagation along the interfacial transition zone (ITZ), whereas aggregate crushing is rarely observed. The number of microcracks in the ITZ component is accounting for 60% and increases slightly with increasing shear-span ratio, which largely contribute to the failure of the RC beams. According to the numerical simulation results, a Zsutty modified formula is proposed for shear capacity evaluation and the performance is validated by 150 tests in the experimental database. For the beams of shear-span ratios low than 2.5, the mean values and coefficient of variation are 1.13 and 26.7%, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信