Leiming Zheng , Huiming Tan , Chicheng Ma , Xuanming Ding , Yifei Sun
{"title":"A real-time crack detection approach for underwater concrete structures using sonar and deep learning","authors":"Leiming Zheng , Huiming Tan , Chicheng Ma , Xuanming Ding , Yifei Sun","doi":"10.1016/j.oceaneng.2025.120582","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a real-time crack detection approach for underwater concrete structures using sonar and deep learning to overcome limitations in low-light or turbid environments where optical imaging struggles. Specifically, a crack detection model based on the YOLOv5s architecture was developed for sonar images, incorporating attention mechanisms and the SIoU loss function to improve detection accuracy. Given the scarcity of acoustic crack image data, a two-stage transfer learning approach was implemented, leveraging both source domain data (publicly available optical crack images) and target domain data acquired from on-site acoustic detection experiments. Ablation studies and comparisons with other advanced models indicate that the proposed model achieves robust detection accuracy ([email protected] = 0.768) with an inference speed of 134 FPS, making it suitable for real-time applications. Additionally, a pixel-based analysis method was used to estimate overall crack dimensions, providing valuable insights into crack characteristics and their potential structural impact.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"322 ","pages":"Article 120582"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825002975","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a real-time crack detection approach for underwater concrete structures using sonar and deep learning to overcome limitations in low-light or turbid environments where optical imaging struggles. Specifically, a crack detection model based on the YOLOv5s architecture was developed for sonar images, incorporating attention mechanisms and the SIoU loss function to improve detection accuracy. Given the scarcity of acoustic crack image data, a two-stage transfer learning approach was implemented, leveraging both source domain data (publicly available optical crack images) and target domain data acquired from on-site acoustic detection experiments. Ablation studies and comparisons with other advanced models indicate that the proposed model achieves robust detection accuracy ([email protected] = 0.768) with an inference speed of 134 FPS, making it suitable for real-time applications. Additionally, a pixel-based analysis method was used to estimate overall crack dimensions, providing valuable insights into crack characteristics and their potential structural impact.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.