Reducing the interfacial thermal resistance between liquid crystal epoxy and hexagonal boron nitride: An investigation from molecular dynamics simulations at the atomic level to macroscopic properties

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Xiao Yan Pang , Ze Ping Zhang , Fei Liang , Shule Liu , Min Zhi Rong , Ming Qiu Zhang
{"title":"Reducing the interfacial thermal resistance between liquid crystal epoxy and hexagonal boron nitride: An investigation from molecular dynamics simulations at the atomic level to macroscopic properties","authors":"Xiao Yan Pang ,&nbsp;Ze Ping Zhang ,&nbsp;Fei Liang ,&nbsp;Shule Liu ,&nbsp;Min Zhi Rong ,&nbsp;Ming Qiu Zhang","doi":"10.1016/j.compositesa.2025.108766","DOIUrl":null,"url":null,"abstract":"<div><div>To gain a profound understanding of the interfacial heat transport mechanisms in hexagonal boron nitride (h-BN)/liquid crystal epoxy (LCE) composites, the theoretical simulation and experimental validation approaches are combined for clarifying the relationship between interfacial microstructure, interfacial thermal resistance (ITR) and macroscopic thermal conductivities of the h-BN/LCE composites. Molecular dynamics simulations (MD) show that LCE molecules can be closely packed on the h-BN surface to lower the ITR by 21 %∼42 %, in comparation to that of amorphous epoxy. Afterwards, the interfacial interactions between h-BN and LCE, and the interface phase thickness (2.305 nm) are experimentally confirmed. Meantime, the reduced ITR are examined to be 15 ∼ 65 % via laser flash method. The produced h-BN/linear LCE composites containing 95 wt% h-BN platelets exhibit excellent in-plane and through plane thermal conductivities up to 77.01 and 12.67 W m<sup>−1</sup> K<sup>−1</sup>, which exceed 25.8 % and 55.8 % those of the amorphous epoxy composite. It proves that the mesogens adsorbed on h-BN surface provides a straightforward approach to reduce ITR and enhance thermal conductivities of resultant composites. Besides, non-covalent and covalent modifications of h-BN allow to further diminish the ITR and facilitate heat transfer. The outcomes are believed to promote the application of h-BN/LCE composites in thermal management materials.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108766"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000600","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

To gain a profound understanding of the interfacial heat transport mechanisms in hexagonal boron nitride (h-BN)/liquid crystal epoxy (LCE) composites, the theoretical simulation and experimental validation approaches are combined for clarifying the relationship between interfacial microstructure, interfacial thermal resistance (ITR) and macroscopic thermal conductivities of the h-BN/LCE composites. Molecular dynamics simulations (MD) show that LCE molecules can be closely packed on the h-BN surface to lower the ITR by 21 %∼42 %, in comparation to that of amorphous epoxy. Afterwards, the interfacial interactions between h-BN and LCE, and the interface phase thickness (2.305 nm) are experimentally confirmed. Meantime, the reduced ITR are examined to be 15 ∼ 65 % via laser flash method. The produced h-BN/linear LCE composites containing 95 wt% h-BN platelets exhibit excellent in-plane and through plane thermal conductivities up to 77.01 and 12.67 W m−1 K−1, which exceed 25.8 % and 55.8 % those of the amorphous epoxy composite. It proves that the mesogens adsorbed on h-BN surface provides a straightforward approach to reduce ITR and enhance thermal conductivities of resultant composites. Besides, non-covalent and covalent modifications of h-BN allow to further diminish the ITR and facilitate heat transfer. The outcomes are believed to promote the application of h-BN/LCE composites in thermal management materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信