{"title":"Timber and carbon sequestration potential of Chinese forests under different forest management scenarios","authors":"Hui-Ling Tian , Jian-Hua Zhu , Xiang-Dong Lei , Xin-Yun Chen , Li-Xiong Zeng , Zun-Ji Jian , Fu-Hua Li , Wen-Fa Xiao","doi":"10.1016/j.accre.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Developing forestry action plans with the goal of carbon neutrality is a critical task to identify carbon sink potential and balance the pathways of China's forests. Current research that predicts forest biomass carbon stock and sink potential has shortcomings, such as an incomplete assessment of China's forest carbon sink range, assumptions based on unchanged forest area in the base year and insufficient consideration of natural and human disturbance factors. This study utilised the national forest inventory (NFI) data to construct a model of forest growth and consumption using a machine learning algorithm (<em>i.e</em>. random forest), identified suitable areas for future forest expansion by integrating multi-source data, and set up three future forest management scenarios: business as usual (BAU), enhanced policy scenario (EPS) and maximum potential scenario (MPS). In addition, changes in the area, volume stock and biomass carbon stock in China's forests between 2020 and 2060 were predicted under three forestry activities (<em>i.e</em>. existing forest, afforested/reforested (AR) forest and forest conversion) and three climate scenarios (<em>i.e</em>. SSP126, SSP370 and SSP585) based on the 9th NFI (2014–2018). According to China's relevant planning goals and suitable forest space, the area of AR forests is predicted to be 55.55 × 10<sup>6</sup> hm<sup>2</sup> by 2060, and the forest coverage rate is predicted to increase from 23% in 2018 to 28% by 2060. Biomass carbon sequestration (BCS) between 2020 and 2060 in AR forests is predicted to be 36.00 TgC per year. By 2060, the average BCS is predicted to be approximately 140.00–287.56 TgC per year in China's forests, which is mainly owing to arbor forest management. Under the BAU and EPS scenarios, BCS in China's forests is expected to decline from 2020 to 2060. However, under the MPS, BCS in China's forests is projected to increase and be maintained at 322 TgC per year or above by 2060, with wood production reaching 4.71 × 10<sup>8</sup> m<sup>3</sup> per year. China's forests are predicted to experience an increase in biomass carbon stock in the future and play a role as a carbon sink. By taking measures to achieve the maximum growth potential of all forest types, China's forests will achieve a win‒win situation between carbon sinks and timber production.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 6","pages":"Pages 1121-1129"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001539","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing forestry action plans with the goal of carbon neutrality is a critical task to identify carbon sink potential and balance the pathways of China's forests. Current research that predicts forest biomass carbon stock and sink potential has shortcomings, such as an incomplete assessment of China's forest carbon sink range, assumptions based on unchanged forest area in the base year and insufficient consideration of natural and human disturbance factors. This study utilised the national forest inventory (NFI) data to construct a model of forest growth and consumption using a machine learning algorithm (i.e. random forest), identified suitable areas for future forest expansion by integrating multi-source data, and set up three future forest management scenarios: business as usual (BAU), enhanced policy scenario (EPS) and maximum potential scenario (MPS). In addition, changes in the area, volume stock and biomass carbon stock in China's forests between 2020 and 2060 were predicted under three forestry activities (i.e. existing forest, afforested/reforested (AR) forest and forest conversion) and three climate scenarios (i.e. SSP126, SSP370 and SSP585) based on the 9th NFI (2014–2018). According to China's relevant planning goals and suitable forest space, the area of AR forests is predicted to be 55.55 × 106 hm2 by 2060, and the forest coverage rate is predicted to increase from 23% in 2018 to 28% by 2060. Biomass carbon sequestration (BCS) between 2020 and 2060 in AR forests is predicted to be 36.00 TgC per year. By 2060, the average BCS is predicted to be approximately 140.00–287.56 TgC per year in China's forests, which is mainly owing to arbor forest management. Under the BAU and EPS scenarios, BCS in China's forests is expected to decline from 2020 to 2060. However, under the MPS, BCS in China's forests is projected to increase and be maintained at 322 TgC per year or above by 2060, with wood production reaching 4.71 × 108 m3 per year. China's forests are predicted to experience an increase in biomass carbon stock in the future and play a role as a carbon sink. By taking measures to achieve the maximum growth potential of all forest types, China's forests will achieve a win‒win situation between carbon sinks and timber production.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.