Narciclasine inhibits vaccinia virus infection by activating the RhoA signaling pathway

IF 3.5 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Ting Xu , Zhengyang Pan , Xue Li , Mengyang Zhao , Zichen Li , Leiliang Zhang
{"title":"Narciclasine inhibits vaccinia virus infection by activating the RhoA signaling pathway","authors":"Ting Xu ,&nbsp;Zhengyang Pan ,&nbsp;Xue Li ,&nbsp;Mengyang Zhao ,&nbsp;Zichen Li ,&nbsp;Leiliang Zhang","doi":"10.1016/j.bsheal.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>In 2022, a sharp rise in global cases of mpox virus (MPXV) led the World Health Organization (WHO) to declare it a public health emergency of international concern. However, progress in developing drugs targeting MPXV has been slow. Here, we investigate the natural alkaloid narciclasine as a potential inhibitor of poxviruses. Our investigation demonstrates that narciclasine at 40 nmol/L (nM) to 160 nM dosages effectively blocks vaccinia virus (VACV), a representative poxvirus. Specifically, narciclasine disrupts the production of extracellular enveloped virus (EEV), which is crucial for viral spread. Narciclasine’s antiviral impact is probably attributed to its activation of the RhoA signaling pathway. This study highlights narciclasine’s potential as a promising new therapeutic candidate against poxviruses, offering prospects for its development into a potent antiviral agent that is essential for combating emerging poxvirus outbreaks.</div></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"6 6","pages":"Pages 341-349"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053624001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

In 2022, a sharp rise in global cases of mpox virus (MPXV) led the World Health Organization (WHO) to declare it a public health emergency of international concern. However, progress in developing drugs targeting MPXV has been slow. Here, we investigate the natural alkaloid narciclasine as a potential inhibitor of poxviruses. Our investigation demonstrates that narciclasine at 40 nmol/L (nM) to 160 nM dosages effectively blocks vaccinia virus (VACV), a representative poxvirus. Specifically, narciclasine disrupts the production of extracellular enveloped virus (EEV), which is crucial for viral spread. Narciclasine’s antiviral impact is probably attributed to its activation of the RhoA signaling pathway. This study highlights narciclasine’s potential as a promising new therapeutic candidate against poxviruses, offering prospects for its development into a potent antiviral agent that is essential for combating emerging poxvirus outbreaks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosafety and Health
Biosafety and Health Medicine-Infectious Diseases
CiteScore
7.60
自引率
0.00%
发文量
116
审稿时长
66 days
文献相关原料
公司名称
产品信息
索莱宝
DMSO
索莱宝
Dimethylsulfoxide (DMSO)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信