{"title":"Rotating spirals for three-component competition systems","authors":"Zaizheng Li , Susanna Terracini","doi":"10.1016/j.jde.2025.02.009","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the existence of rotating spirals for three-component competition-diffusion systems in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>β</mi><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>β</mi><mi>γ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mtd><mtd><mtext>in</mtext><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>β</mi><mi>γ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>β</mi><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mtd><mtd><mtext>in</mtext><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>−</mo><mi>β</mi><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mi>β</mi><mi>γ</mi><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo></mtd><mtd><mtext>in</mtext><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mtext>x</mtext><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mtext>x</mtext><mo>)</mo><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo></mtd><mtd><mtext>in</mtext><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> with Neumann or Dirichlet boundary conditions, where <span><math><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mi>s</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>s</mi><mo>)</mo></math></span> with <span><math><mi>μ</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>α</mi><mo>≠</mo><mi>γ</mi></math></span>. For the Neumann problem, we establish the existence of rotating spirals by applying the multi-parameter bifurcation theorem. As a byproduct, the instability of the constant positive solution is proved. In addition, for the non-homogeneous Dirichlet problem, the Rothe fixed point theorem is employed to prove the existence of rotating spirals.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 853-875"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001147","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the existence of rotating spirals for three-component competition-diffusion systems in : with Neumann or Dirichlet boundary conditions, where with and . For the Neumann problem, we establish the existence of rotating spirals by applying the multi-parameter bifurcation theorem. As a byproduct, the instability of the constant positive solution is proved. In addition, for the non-homogeneous Dirichlet problem, the Rothe fixed point theorem is employed to prove the existence of rotating spirals.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics