A cross-feature interaction network for 3D human pose estimation

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jihua Peng , Yanghong Zhou , P.Y. Mok
{"title":"A cross-feature interaction network for 3D human pose estimation","authors":"Jihua Peng ,&nbsp;Yanghong Zhou ,&nbsp;P.Y. Mok","doi":"10.1016/j.patrec.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>The task of estimating 3D human poses from single monocular images is challenging because, unlike video sequences, single images can hardly provide any temporal information for the prediction. Most existing methods attempt to predict 3D poses by modeling the spatial dependencies inherent in the anatomical structure of the human skeleton, yet these methods fail to capture the complex local and global relationships that exist among various joints. To solve this problem, we propose a novel Cross-Feature Interaction Network to effectively model spatial correlations between body joints. Specifically, we exploit graph convolutional networks (GCNs) to learn the local features between neighboring joints and the self-attention structure to learn the global features among all joints. We then design a cross-feature interaction (CFI) module to facilitate cross-feature communications among the three different features, namely the local features, global features, and initial 2D pose features, aggregating them to form enhanced spatial representations of human pose. Furthermore, a novel graph-enhanced module (GraMLP) with parallel GCN and multi-layer perceptron is introduced to inject the skeletal knowledge of the human body into the final representation of 3D pose. Extensive experiments on two datasets (Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) show the superior performance of our method in comparison to existing state-of-the-art (SOTA) models. The code and data are shared at <span><span>https://github.com/JihuaPeng/CFI-3DHPE</span><svg><path></path></svg></span></div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"189 ","pages":"Pages 175-181"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525000157","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The task of estimating 3D human poses from single monocular images is challenging because, unlike video sequences, single images can hardly provide any temporal information for the prediction. Most existing methods attempt to predict 3D poses by modeling the spatial dependencies inherent in the anatomical structure of the human skeleton, yet these methods fail to capture the complex local and global relationships that exist among various joints. To solve this problem, we propose a novel Cross-Feature Interaction Network to effectively model spatial correlations between body joints. Specifically, we exploit graph convolutional networks (GCNs) to learn the local features between neighboring joints and the self-attention structure to learn the global features among all joints. We then design a cross-feature interaction (CFI) module to facilitate cross-feature communications among the three different features, namely the local features, global features, and initial 2D pose features, aggregating them to form enhanced spatial representations of human pose. Furthermore, a novel graph-enhanced module (GraMLP) with parallel GCN and multi-layer perceptron is introduced to inject the skeletal knowledge of the human body into the final representation of 3D pose. Extensive experiments on two datasets (Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)) show the superior performance of our method in comparison to existing state-of-the-art (SOTA) models. The code and data are shared at https://github.com/JihuaPeng/CFI-3DHPE

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信