Removal of tetracycline from aqueous solution by magnetic biochar modified with different iron valence and K2C2O4: A comparative study and mechanism

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Guodong Hong , Zhenqiang Yu , Dexin Kong , Taoli Huhe , Rui Shan , Haoran Yuan , Yong Chen
{"title":"Removal of tetracycline from aqueous solution by magnetic biochar modified with different iron valence and K2C2O4: A comparative study and mechanism","authors":"Guodong Hong ,&nbsp;Zhenqiang Yu ,&nbsp;Dexin Kong ,&nbsp;Taoli Huhe ,&nbsp;Rui Shan ,&nbsp;Haoran Yuan ,&nbsp;Yong Chen","doi":"10.1016/j.jaap.2025.107005","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, the selection of iron valence states in composite-modified magnetic biochar prepared by co-pyrolysis exhibits a high degree of blindness. Therefore, this study compares the performance of biochar preparation via co-pyrolysis of three different iron valences (Fe<sup>2 +</sup>, Fe<sup>3+</sup>, and Fe<sup>6+</sup>) and potassium oxalate (K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) composite modification for tetracycline (TC) removal. The results indicate that the co-activation of potassium oxalate with different iron valences led to the formation of magnetic biochar with varying elemental contents, morphologies, and structures. Batch adsorption experiments demonstrate that KF3-BC has a high tetracycline removal rate over a wide pH range (3 – 11) and at high coexisting ion concentrations (1 – 100 mmol/L). Furthermore, experiments with synthetic swine wastewater in different matrices, the adsorption capacity of KF3-BC for TC (at a concentration of 100 mg/L) exceeds 81.09 mg/g. Additionally, under optimal conditions of 30 °C and pH = 5, the theoretical maximum adsorption capacity (Q<sub>max</sub>) for TC is as follows: KF3-BC (236.91 mg/g) &gt; KF6-BC (169.42 mg/g) &gt; KF2-BC (51.34 mg/g) &gt; BC (38.41 mg/g). The adsorption processes of KF2-BC, KF3-BC, and KF6-BC all conform to the Pseudo-second-order and Freundlich models, implying that TC adsorption occurs at the multilayer molecular adsorption on heterogeneous surfaces, primarily driven by chemisorption. The primary adsorption mechanism between KF-BCs and TC molecules is the π–π EDA interactions. Additionally, hydrogen bonding, cation–π complexation, electrostatic interactions, and pore filling also contribute to the adsorption process. This study can assist in selecting the optimal iron source and chemical activator for composite modification of biochar for the adsorption of TC in wastewater.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"187 ","pages":"Article 107005"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025000580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the selection of iron valence states in composite-modified magnetic biochar prepared by co-pyrolysis exhibits a high degree of blindness. Therefore, this study compares the performance of biochar preparation via co-pyrolysis of three different iron valences (Fe2 +, Fe3+, and Fe6+) and potassium oxalate (K2C2O4) composite modification for tetracycline (TC) removal. The results indicate that the co-activation of potassium oxalate with different iron valences led to the formation of magnetic biochar with varying elemental contents, morphologies, and structures. Batch adsorption experiments demonstrate that KF3-BC has a high tetracycline removal rate over a wide pH range (3 – 11) and at high coexisting ion concentrations (1 – 100 mmol/L). Furthermore, experiments with synthetic swine wastewater in different matrices, the adsorption capacity of KF3-BC for TC (at a concentration of 100 mg/L) exceeds 81.09 mg/g. Additionally, under optimal conditions of 30 °C and pH = 5, the theoretical maximum adsorption capacity (Qmax) for TC is as follows: KF3-BC (236.91 mg/g) > KF6-BC (169.42 mg/g) > KF2-BC (51.34 mg/g) > BC (38.41 mg/g). The adsorption processes of KF2-BC, KF3-BC, and KF6-BC all conform to the Pseudo-second-order and Freundlich models, implying that TC adsorption occurs at the multilayer molecular adsorption on heterogeneous surfaces, primarily driven by chemisorption. The primary adsorption mechanism between KF-BCs and TC molecules is the π–π EDA interactions. Additionally, hydrogen bonding, cation–π complexation, electrostatic interactions, and pore filling also contribute to the adsorption process. This study can assist in selecting the optimal iron source and chemical activator for composite modification of biochar for the adsorption of TC in wastewater.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信