Junting Liang , Dihan Duan , Lubing Sun , Jinming Li , Mengke Wang , Ziyi Chang , Rick F. Thorne , Chuanliang Chen , Demin Duan
{"title":"High-sensitivity colorimetric sensor based on oxidase-like Mn3O4 nanozyme for Cys detection","authors":"Junting Liang , Dihan Duan , Lubing Sun , Jinming Li , Mengke Wang , Ziyi Chang , Rick F. Thorne , Chuanliang Chen , Demin Duan","doi":"10.1016/j.snr.2025.100296","DOIUrl":null,"url":null,"abstract":"<div><div>Cysteine (Cys) is essential for numerous physiological processes and play a vital role in disease diagnostics, underscoring the necessity for effective and sensitive detection techniques for Cys. In this research, we introduce an ultrasensitive colorimetric approach based on oxidase-like Mn<sub>3</sub>O<sub>4</sub> nanozymes. The nanozymes were synthesized through a straightforward wet chemical method and displayed a flower-like globular morphology, showing remarkable oxidase-like catalytic performance with a low K<sub>m</sub> value of 0.1896 mM and a high V<sub>max</sub> of 2.8 × 10⁻⁷ M s⁻¹. By leveraging the outstanding catalytic activities of Mn<sub>3</sub>O<sub>4</sub> nanozymes and optimizing the TMB concentration, we developed a novel and sensitive colorimetric sensor for Cys detection. Experimental results indicated a detection range for Cys between 0.5 and 45 μM, with a lower limit of detection (LOD) of 0.02636 μM. This established method for detecting Cys reveals significant promise for the advancement of effective sensing systems.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"9 ","pages":"Article 100296"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053925000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cysteine (Cys) is essential for numerous physiological processes and play a vital role in disease diagnostics, underscoring the necessity for effective and sensitive detection techniques for Cys. In this research, we introduce an ultrasensitive colorimetric approach based on oxidase-like Mn3O4 nanozymes. The nanozymes were synthesized through a straightforward wet chemical method and displayed a flower-like globular morphology, showing remarkable oxidase-like catalytic performance with a low Km value of 0.1896 mM and a high Vmax of 2.8 × 10⁻⁷ M s⁻¹. By leveraging the outstanding catalytic activities of Mn3O4 nanozymes and optimizing the TMB concentration, we developed a novel and sensitive colorimetric sensor for Cys detection. Experimental results indicated a detection range for Cys between 0.5 and 45 μM, with a lower limit of detection (LOD) of 0.02636 μM. This established method for detecting Cys reveals significant promise for the advancement of effective sensing systems.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.