Existing technologies and scientific advancements to decarbonize shipping by retrofitting

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Aleksander A. Kondratenko , Mingyang Zhang , Sasan Tavakoli , Elias Altarriba , Spyros Hirdaris
{"title":"Existing technologies and scientific advancements to decarbonize shipping by retrofitting","authors":"Aleksander A. Kondratenko ,&nbsp;Mingyang Zhang ,&nbsp;Sasan Tavakoli ,&nbsp;Elias Altarriba ,&nbsp;Spyros Hirdaris","doi":"10.1016/j.rser.2025.115430","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime industry is transporting about 90 % of world commerce, contributing to the global greenhouse gas emissions that cause climate change. Increasing pressure on the sector to reduce its carbon footprint requires developing specialized energy-efficient technologies and studying their compatibility with modern safety and sustainability expectations of the waterborne sector. This research supports the United Nations sustainable development goals SDG 7 (Affordable and clean energy) and 13 (Climate Action), and reviews available technologies for shipping decarbonization through design for retrofitting. Promising research areas to improve the energy efficiency of ships could focus on design concepts and methodologies, fluid dynamics, and artificial intelligence. The study suggests that while individual promising decarbonization technologies are available, a comprehensive and coordinated approach is necessary to decarbonize global shipping efficiently. The study identified three promising paths of ship retrofitting to meet the International Maritime Organization decarbonizing objective 2050, aiming at a 70 % reduction of annual greenhouse gas emissions compared to 2008. The first path – using green energy sources (e.g., ammonia, battery, and methanol) – requires scaling up technologies and developing a regulatory framework and control of the lifecycle of the fuel production process. The second path – using ship-based carbon capture technologies, ship design (e.g., hull retrofitting, air lubrication, and wind-assisted propulsion), and operation solutions (e.g., weather routing and logistics planning) – requires building more CO<sub>2</sub> storage and control of the lifecycle of liquified CO<sub>2</sub>. The third path – using biodiesel as a fuel in combination with ship design and operation solutions – requires extending feedstock for biodiesel production.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"212 ","pages":"Article 115430"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001030","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The maritime industry is transporting about 90 % of world commerce, contributing to the global greenhouse gas emissions that cause climate change. Increasing pressure on the sector to reduce its carbon footprint requires developing specialized energy-efficient technologies and studying their compatibility with modern safety and sustainability expectations of the waterborne sector. This research supports the United Nations sustainable development goals SDG 7 (Affordable and clean energy) and 13 (Climate Action), and reviews available technologies for shipping decarbonization through design for retrofitting. Promising research areas to improve the energy efficiency of ships could focus on design concepts and methodologies, fluid dynamics, and artificial intelligence. The study suggests that while individual promising decarbonization technologies are available, a comprehensive and coordinated approach is necessary to decarbonize global shipping efficiently. The study identified three promising paths of ship retrofitting to meet the International Maritime Organization decarbonizing objective 2050, aiming at a 70 % reduction of annual greenhouse gas emissions compared to 2008. The first path – using green energy sources (e.g., ammonia, battery, and methanol) – requires scaling up technologies and developing a regulatory framework and control of the lifecycle of the fuel production process. The second path – using ship-based carbon capture technologies, ship design (e.g., hull retrofitting, air lubrication, and wind-assisted propulsion), and operation solutions (e.g., weather routing and logistics planning) – requires building more CO2 storage and control of the lifecycle of liquified CO2. The third path – using biodiesel as a fuel in combination with ship design and operation solutions – requires extending feedstock for biodiesel production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信