R.H. Hagenaars , R. Heijungs , A. Tukker , R. Wang
{"title":"Hybrid LCA for sustainable transitions: principles, applications, and prospects","authors":"R.H. Hagenaars , R. Heijungs , A. Tukker , R. Wang","doi":"10.1016/j.rser.2025.115443","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid life cycle assessment (LCA) offers an integrated approach, combining process-based and input-output data. As such, it strives for a more comprehensive and precise evaluation of alternative technologies and products, supporting sustainability transitions. A review of 114 studies from 2016 to 2022 reveals that hybrid LCA applications are most commonly focused on energy systems (24 %), with a strong emphasis on assessing climate change impacts. Hybrid LCA is crucial for addressing the data gaps prevalent in environmental evaluations of renewable energy technologies. Methodological innovations, such as combining hybrid LCA with multi-objective optimization, show promise in pinpointing ideal locations and designs for energy plants, such as biorefineries. However, a concerning observation is that many studies employed oversimplified or inadequately documented hybridization procedures, raising questions about their robustness. The review also identifies several remaining challenges in hybrid LCA, including the linearity assumptions, omission of capital goods, price data uncertainties, and inconsistencies in environmental flow data. A significant advancement lies in creating standardized datasets, especially for construction materials. Such datasets could enable large-scale evaluations of embodied impacts across projects, facilitating the selection of construction materials based on comprehensive material trade-offs and supporting net-zero carbon construction. Furthermore, to enhance hybrid LCA in future research, this study presents a streamlined classification of the various methods, clarifying their intended purpose and computational structure.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"212 ","pages":"Article 115443"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001169","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid life cycle assessment (LCA) offers an integrated approach, combining process-based and input-output data. As such, it strives for a more comprehensive and precise evaluation of alternative technologies and products, supporting sustainability transitions. A review of 114 studies from 2016 to 2022 reveals that hybrid LCA applications are most commonly focused on energy systems (24 %), with a strong emphasis on assessing climate change impacts. Hybrid LCA is crucial for addressing the data gaps prevalent in environmental evaluations of renewable energy technologies. Methodological innovations, such as combining hybrid LCA with multi-objective optimization, show promise in pinpointing ideal locations and designs for energy plants, such as biorefineries. However, a concerning observation is that many studies employed oversimplified or inadequately documented hybridization procedures, raising questions about their robustness. The review also identifies several remaining challenges in hybrid LCA, including the linearity assumptions, omission of capital goods, price data uncertainties, and inconsistencies in environmental flow data. A significant advancement lies in creating standardized datasets, especially for construction materials. Such datasets could enable large-scale evaluations of embodied impacts across projects, facilitating the selection of construction materials based on comprehensive material trade-offs and supporting net-zero carbon construction. Furthermore, to enhance hybrid LCA in future research, this study presents a streamlined classification of the various methods, clarifying their intended purpose and computational structure.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.