Shibo Zhu , Xiaodan Shi , Huan Zhao , Yuntian Chen , Haoran Zhang , Xuan Song , Tianhao Wu , Jinyue Yan
{"title":"Personalized federated learning for household electricity load prediction with imbalanced historical data","authors":"Shibo Zhu , Xiaodan Shi , Huan Zhao , Yuntian Chen , Haoran Zhang , Xuan Song , Tianhao Wu , Jinyue Yan","doi":"10.1016/j.apenergy.2025.125419","DOIUrl":null,"url":null,"abstract":"<div><div>Household consumption accounts for about one-third of global electricity. Accurate results of household load prediction would help in energy management at both the building and the grid levels. Data-driven household load prediction methods have shown great advantages and potential in terms of accuracy. However, these methods still face challenges such as limited data for individual households, diversified electricity consumption behaviors, and data privacy concerns. To solve these problems, this paper proposes a personalized federated learning household load prediction framework (PF-HoLo), which allows personal models to learn collectively, leverages multisource data to capture diverse consumption behaviors, and ensures data privacy. In addition, the global encoder model and mutual learning are proposed to enhance the performance of the PF-HoLo framework considering imbalanced residential historical data. Ablation experiments results prove that the PF-HoLo framework could achieve significant improvements, with 13.41% Mean Square Error and 11.33% Mean Absolute Error, compared to traditional federated learning methods.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125419"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001497","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Household consumption accounts for about one-third of global electricity. Accurate results of household load prediction would help in energy management at both the building and the grid levels. Data-driven household load prediction methods have shown great advantages and potential in terms of accuracy. However, these methods still face challenges such as limited data for individual households, diversified electricity consumption behaviors, and data privacy concerns. To solve these problems, this paper proposes a personalized federated learning household load prediction framework (PF-HoLo), which allows personal models to learn collectively, leverages multisource data to capture diverse consumption behaviors, and ensures data privacy. In addition, the global encoder model and mutual learning are proposed to enhance the performance of the PF-HoLo framework considering imbalanced residential historical data. Ablation experiments results prove that the PF-HoLo framework could achieve significant improvements, with 13.41% Mean Square Error and 11.33% Mean Absolute Error, compared to traditional federated learning methods.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.