Privacy-protected P2P electricity and carbon emission trading markets based on distributionally robust proximal atomic coordination algorithm

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Chengwei Lou , Zekai Jin , Yue Zhou , Wei Tang , Lu Zhang , Jin Yang
{"title":"Privacy-protected P2P electricity and carbon emission trading markets based on distributionally robust proximal atomic coordination algorithm","authors":"Chengwei Lou ,&nbsp;Zekai Jin ,&nbsp;Yue Zhou ,&nbsp;Wei Tang ,&nbsp;Lu Zhang ,&nbsp;Jin Yang","doi":"10.1016/j.apenergy.2025.125409","DOIUrl":null,"url":null,"abstract":"<div><div>As global power systems modernize towards intelligent infrastructures, peer-to-peer (P2P) energy trading is increasingly adopted worldwide as an innovative electricity market mechanism. This paper explores the decision-making behaviors of diverse agents, market mechanisms, and privacy protections in fully decentralized P2P electricity and carbon emission trading (CET), accounting for uncertainties from renewable energy sources. A novel P2P energy trading mechanism is proposed based on asymmetric Nash bargaining theory. The P2P electricity and carbon market models are decomposed into a cooperative alliance operation problem and an asymmetric cost distribution problem. Additionally, a contribution factor calculation method is introduced, considering both P2P electricity trading and CET marginal effect contribution. To manage renewable energy output uncertainties, a distributionally robust model using Kullback–Leibler (KL) divergence is reformulated as a chance-constrained problem. A proximal atomic coordination (PAC) algorithm is implemented to enhance privacy protection within a fully decentralized framework. Case studies demonstrate that P2P energy trading can reduce total costs by 10.29% and carbon quotas by 11.86% for cooperative alliances. Furthermore, the PAC algorithm decreases total computational time by 12.65% compared to the ADMM algorithm, highlighting its effectiveness in improving computational efficiency and safeguarding user privacy.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125409"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001394","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As global power systems modernize towards intelligent infrastructures, peer-to-peer (P2P) energy trading is increasingly adopted worldwide as an innovative electricity market mechanism. This paper explores the decision-making behaviors of diverse agents, market mechanisms, and privacy protections in fully decentralized P2P electricity and carbon emission trading (CET), accounting for uncertainties from renewable energy sources. A novel P2P energy trading mechanism is proposed based on asymmetric Nash bargaining theory. The P2P electricity and carbon market models are decomposed into a cooperative alliance operation problem and an asymmetric cost distribution problem. Additionally, a contribution factor calculation method is introduced, considering both P2P electricity trading and CET marginal effect contribution. To manage renewable energy output uncertainties, a distributionally robust model using Kullback–Leibler (KL) divergence is reformulated as a chance-constrained problem. A proximal atomic coordination (PAC) algorithm is implemented to enhance privacy protection within a fully decentralized framework. Case studies demonstrate that P2P energy trading can reduce total costs by 10.29% and carbon quotas by 11.86% for cooperative alliances. Furthermore, the PAC algorithm decreases total computational time by 12.65% compared to the ADMM algorithm, highlighting its effectiveness in improving computational efficiency and safeguarding user privacy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信