Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Emrah Dokur , Nuh Erdogan , Ibrahim Sengor , Ugur Yuzgec , Barry P. Hayes
{"title":"Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data","authors":"Emrah Dokur ,&nbsp;Nuh Erdogan ,&nbsp;Ibrahim Sengor ,&nbsp;Ugur Yuzgec ,&nbsp;Barry P. Hayes","doi":"10.1016/j.apenergy.2025.125433","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread adoption of low-carbon technologies, such as photovoltaics, electric vehicles, heat pumps, and energy storage units introduces challenges to distribution network congestion and power quality, particularly raising concerns about voltage stability. Enhanced voltage visibility in low-voltage networks is increasingly vital for active grid management, making efficient voltage forecasting tools essential. This study introduces a novel data-driven approach for forecasting node voltages in low-voltage networks with high penetration of low-carbon technologies. Using time series of power measurements from smart meter data, the study integrates an Extreme Learning Machine with the Single Candidate Optimizer to enhance computational efficiency and forecasting accuracy. The model is validated using smart meter datasets from two different low-voltage networks with low-carbon technologies and is compared with several established machine learning models. The results demonstrate that the optimization algorithm significantly improves the tuning of model parameters, achieving up to a 17-fold reduction in computation time compared to the fastest metaheuristic methods implemented. The proposed model demonstrated superior accuracy, with an average voltage deviation of 0.56%. Although the computation time per node achieved is not yet suitable for real time applications, the study shows that the optimization method significantly improves the performance of the forecasting tool.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125433"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001631","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread adoption of low-carbon technologies, such as photovoltaics, electric vehicles, heat pumps, and energy storage units introduces challenges to distribution network congestion and power quality, particularly raising concerns about voltage stability. Enhanced voltage visibility in low-voltage networks is increasingly vital for active grid management, making efficient voltage forecasting tools essential. This study introduces a novel data-driven approach for forecasting node voltages in low-voltage networks with high penetration of low-carbon technologies. Using time series of power measurements from smart meter data, the study integrates an Extreme Learning Machine with the Single Candidate Optimizer to enhance computational efficiency and forecasting accuracy. The model is validated using smart meter datasets from two different low-voltage networks with low-carbon technologies and is compared with several established machine learning models. The results demonstrate that the optimization algorithm significantly improves the tuning of model parameters, achieving up to a 17-fold reduction in computation time compared to the fastest metaheuristic methods implemented. The proposed model demonstrated superior accuracy, with an average voltage deviation of 0.56%. Although the computation time per node achieved is not yet suitable for real time applications, the study shows that the optimization method significantly improves the performance of the forecasting tool.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信