Mechanics of composites with finite length crimped fibers dispersed in a soft matrix

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Nandan N. Pitre , Edith Tzeng , Nhung Nguyen , Steven Abramowitch , Sachin S. Velankar
{"title":"Mechanics of composites with finite length crimped fibers dispersed in a soft matrix","authors":"Nandan N. Pitre ,&nbsp;Edith Tzeng ,&nbsp;Nhung Nguyen ,&nbsp;Steven Abramowitch ,&nbsp;Sachin S. Velankar","doi":"10.1016/j.compscitech.2025.111056","DOIUrl":null,"url":null,"abstract":"<div><div>Collagen-containing tissues show strain hardening behavior due to the alignment and the waviness of collagen fibers. As the fibers uncrimp and align with stretching, they become increasingly load-bearing and make the tissue strain hardening. We consider the mechanics of analogous synthetic composites comprising stiff crimped fibers dispersed in a soft elastomeric matrix. A novel workflow is developed wherein a random configuration of hundreds of finite-length crimped fibers embedded in a soft matrix can be created, meshed, and then simulated by 3D finite element methods. We show that the mechanical behavior of these composites is affected by the degree of fiber crimp, the fiber volume fraction, and fiber orientation. The degree of reinforcement of the soft matrix was found to increase with volume fraction of the fibers, and with better alignment of the fibers along the tension direction. Fibers with larger crimp amplitude were found to show strain hardening behavior, i.e. contribute little to the stress at small strain, but much more at large strain. The Holzapfel-Gasser-Ogden model is shown to capture the stress-strain behavior adequately. Further, we show that simulations of a single fiber embedded in a soft matrix can approximately predict the mechanical behavior of multifiber composites at much reduced computational cost. Such composites of chopped crimped fibers offer the benefit of reproducing the mechanical behavior of tissues, while still being flow-processable.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"263 ","pages":"Article 111056"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Collagen-containing tissues show strain hardening behavior due to the alignment and the waviness of collagen fibers. As the fibers uncrimp and align with stretching, they become increasingly load-bearing and make the tissue strain hardening. We consider the mechanics of analogous synthetic composites comprising stiff crimped fibers dispersed in a soft elastomeric matrix. A novel workflow is developed wherein a random configuration of hundreds of finite-length crimped fibers embedded in a soft matrix can be created, meshed, and then simulated by 3D finite element methods. We show that the mechanical behavior of these composites is affected by the degree of fiber crimp, the fiber volume fraction, and fiber orientation. The degree of reinforcement of the soft matrix was found to increase with volume fraction of the fibers, and with better alignment of the fibers along the tension direction. Fibers with larger crimp amplitude were found to show strain hardening behavior, i.e. contribute little to the stress at small strain, but much more at large strain. The Holzapfel-Gasser-Ogden model is shown to capture the stress-strain behavior adequately. Further, we show that simulations of a single fiber embedded in a soft matrix can approximately predict the mechanical behavior of multifiber composites at much reduced computational cost. Such composites of chopped crimped fibers offer the benefit of reproducing the mechanical behavior of tissues, while still being flow-processable.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信