Yi Liu , Jiachen Dong , Xiaohui Cheng , Xiaotong Cen , Yan Dang , Kangning Xu , Min Zheng
{"title":"Dual role of organic matter in Feammox-driven nitrogen and phosphate removal","authors":"Yi Liu , Jiachen Dong , Xiaohui Cheng , Xiaotong Cen , Yan Dang , Kangning Xu , Min Zheng","doi":"10.1016/j.wroa.2025.100312","DOIUrl":null,"url":null,"abstract":"<div><div>Feammox is a novel microbial process that enables simultaneous nitrogen and phosphorus removal in wastewater treatment. This study investigated the role of organic matter in Feammox-driven nutrient removal during long-term bioreactor operation by gradually increasing the influent chemical oxygen demand (COD) concentration from 0 to 50, and then to 100 mg/L. The results revealed that the ammonium removal efficiency was reduced from 60.5 % to 20.7 % with COD concentration increasing from 0 to 100 mg/L. In contrast, organic matter enhanced nitrate removal through heterotrophic denitrification, which outcompeted nitrate-dependent Fe(II) oxidation. Phosphorus removal was increased up to approximately 90 % via Fe(II)-mediated precipitation, forming vivianite crystals, evidenced by X-ray diffraction analysis. Continuous addition of Fe(III) alleviated the inhibitory effect of organic matter on ammonia oxidation by serving as an alternative electron acceptor, reducing competition. Therefore, optimizing organic matter levels and ensuring sufficient Fe(III) availability are crucial for achieving efficient nutrient removal in Feammox systems, particularly for treating wastewater with a low carbon/nitrogen ratio.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"Article 100312"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000118","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Feammox is a novel microbial process that enables simultaneous nitrogen and phosphorus removal in wastewater treatment. This study investigated the role of organic matter in Feammox-driven nutrient removal during long-term bioreactor operation by gradually increasing the influent chemical oxygen demand (COD) concentration from 0 to 50, and then to 100 mg/L. The results revealed that the ammonium removal efficiency was reduced from 60.5 % to 20.7 % with COD concentration increasing from 0 to 100 mg/L. In contrast, organic matter enhanced nitrate removal through heterotrophic denitrification, which outcompeted nitrate-dependent Fe(II) oxidation. Phosphorus removal was increased up to approximately 90 % via Fe(II)-mediated precipitation, forming vivianite crystals, evidenced by X-ray diffraction analysis. Continuous addition of Fe(III) alleviated the inhibitory effect of organic matter on ammonia oxidation by serving as an alternative electron acceptor, reducing competition. Therefore, optimizing organic matter levels and ensuring sufficient Fe(III) availability are crucial for achieving efficient nutrient removal in Feammox systems, particularly for treating wastewater with a low carbon/nitrogen ratio.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.