Mechanisms of N2O production in salinity-adapted partial nitritation systems for high-ammonia wastewater treatment

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xiang Li , Yingxin Jin , Yanying He , Yufen Wang , Tingting Zhu , Yingxin Zhao , Bing-Jie Ni , Yiwen Liu
{"title":"Mechanisms of N2O production in salinity-adapted partial nitritation systems for high-ammonia wastewater treatment","authors":"Xiang Li ,&nbsp;Yingxin Jin ,&nbsp;Yanying He ,&nbsp;Yufen Wang ,&nbsp;Tingting Zhu ,&nbsp;Yingxin Zhao ,&nbsp;Bing-Jie Ni ,&nbsp;Yiwen Liu","doi":"10.1016/j.wroa.2025.100311","DOIUrl":null,"url":null,"abstract":"<div><div>Partial Nitritation/Anammox (PN/A) can achieve green, economical, and efficient biological nitrogen removal; however, the PN process contributes significantly to nitrous oxide (N<sub>2</sub>O, the third most important greenhouse gas) emissions. Balancing the stability of PN systems while reducing N<sub>2</sub>O emissions, particularly under varying salinity conditions, is a key challenge in applying PN/A for high-salinity and high-ammonia wastewater treatment. This study explored the long-term effects of salinity on PN performance and N<sub>2</sub>O emissions in PN systems treating high-ammonia wastewater. The results showed that the specific ammonia oxidation rates of the control and two salinity-acclimated PN reactors were 78.84, 75.03, and 42.60 mg N/(g VSS·h), indicating that low salinity (2.5 g NaCl/L) had minimal effect, while high salinity (10 g NaCl/L) significantly inhibited ammonia-oxidating bacteria and associated nitritation processes. Moreover, N<sub>2</sub>O emission factors increased from 0.08 ± 0.04% to 0.24 ± 0.03% as salinity rose from 0 to 10 g NaCl/L. Further analysis revealed that salinity stimulated N<sub>2</sub>O production in both aerobic and anoxic stages. Particularly, the N<sub>2</sub>O production increased by 2.84–11.14 times in the aerated stage and by 0.61–2.04 times in the nonaerated stage (i.e. anoxic and settling stages). Isotopic pathway analysis indicated that salinity enhanced N<sub>2</sub>O production primarily by stimulating the nitrite reduction pathway. Additionally, the mechanism investigation examined the combined effects of salinity-induced changes in sludge properties and microbial community on N<sub>2</sub>O emissions. These findings provide valuable insights for applying PN systems to treat high-strength wastewater and understanding the mechanisms of N<sub>2</sub>O emissions.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"Article 100311"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000106","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Partial Nitritation/Anammox (PN/A) can achieve green, economical, and efficient biological nitrogen removal; however, the PN process contributes significantly to nitrous oxide (N2O, the third most important greenhouse gas) emissions. Balancing the stability of PN systems while reducing N2O emissions, particularly under varying salinity conditions, is a key challenge in applying PN/A for high-salinity and high-ammonia wastewater treatment. This study explored the long-term effects of salinity on PN performance and N2O emissions in PN systems treating high-ammonia wastewater. The results showed that the specific ammonia oxidation rates of the control and two salinity-acclimated PN reactors were 78.84, 75.03, and 42.60 mg N/(g VSS·h), indicating that low salinity (2.5 g NaCl/L) had minimal effect, while high salinity (10 g NaCl/L) significantly inhibited ammonia-oxidating bacteria and associated nitritation processes. Moreover, N2O emission factors increased from 0.08 ± 0.04% to 0.24 ± 0.03% as salinity rose from 0 to 10 g NaCl/L. Further analysis revealed that salinity stimulated N2O production in both aerobic and anoxic stages. Particularly, the N2O production increased by 2.84–11.14 times in the aerated stage and by 0.61–2.04 times in the nonaerated stage (i.e. anoxic and settling stages). Isotopic pathway analysis indicated that salinity enhanced N2O production primarily by stimulating the nitrite reduction pathway. Additionally, the mechanism investigation examined the combined effects of salinity-induced changes in sludge properties and microbial community on N2O emissions. These findings provide valuable insights for applying PN systems to treat high-strength wastewater and understanding the mechanisms of N2O emissions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信