Vision-Based Digital Shadowing to Reveal Hidden Structural Dynamics of a Real Supertall Building

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Donglian Gu , Qingrui Yue , Li Li , Chujin Sun , Xinzheng Lu
{"title":"Vision-Based Digital Shadowing to Reveal Hidden Structural Dynamics of a Real Supertall Building","authors":"Donglian Gu ,&nbsp;Qingrui Yue ,&nbsp;Li Li ,&nbsp;Chujin Sun ,&nbsp;Xinzheng Lu","doi":"10.1016/j.eng.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Vision-based digital shadowing is a highly efficient way to monitor the health of buildings in use. However, previous studies on digital shadowing have been limited to laboratory experiments. This paper proposes a novel computer-vision-based digital shadow workflow and presents its successful application in a real engineering case. In this case, a 345.8-m supertall building experienced unexpected shaking under normal meteorological conditions. This study established a digital shadow of the building using three-dimensional displacement measurements based on super-resolution monocular vision, revealing the hidden structural dynamics and inherent mechanical reasons for the abnormal shaking. The proposed digital shadowing workflow is a feasible roadmap for developing vision-based digital shadows of real-world structures using low-cost cameras. The abnormal vibration event in the supertall building considered in this study is the first of its type worldwide. The results of this study offer practical strategies and invaluable insights into the prevention and mitigation of this type of global risk, thereby contributing to the lifespan extension of buildings in use worldwide. Furthermore, with the increasing number of general sensing devices, such as surveillance cameras in cities, the proposed method may unleash the immense potential of general sensing devices in achieving the leap from structural health monitoring to city health monitoring.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"43 ","pages":"Pages 146-158"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005861","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vision-based digital shadowing is a highly efficient way to monitor the health of buildings in use. However, previous studies on digital shadowing have been limited to laboratory experiments. This paper proposes a novel computer-vision-based digital shadow workflow and presents its successful application in a real engineering case. In this case, a 345.8-m supertall building experienced unexpected shaking under normal meteorological conditions. This study established a digital shadow of the building using three-dimensional displacement measurements based on super-resolution monocular vision, revealing the hidden structural dynamics and inherent mechanical reasons for the abnormal shaking. The proposed digital shadowing workflow is a feasible roadmap for developing vision-based digital shadows of real-world structures using low-cost cameras. The abnormal vibration event in the supertall building considered in this study is the first of its type worldwide. The results of this study offer practical strategies and invaluable insights into the prevention and mitigation of this type of global risk, thereby contributing to the lifespan extension of buildings in use worldwide. Furthermore, with the increasing number of general sensing devices, such as surveillance cameras in cities, the proposed method may unleash the immense potential of general sensing devices in achieving the leap from structural health monitoring to city health monitoring.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信