Nanofluidic Manipulation of Single Nanometric Objects: Current Progress, Challenges, and Future Opportunities

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Nattapong Chantipmanee , Yan Xu
{"title":"Nanofluidic Manipulation of Single Nanometric Objects: Current Progress, Challenges, and Future Opportunities","authors":"Nattapong Chantipmanee ,&nbsp;Yan Xu","doi":"10.1016/j.eng.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>The manipulation of nanometric objects, encompassing both non-biological and biological objects, offers a transformative avenue for breakthroughs in diverse fields, such as chemistry, biology, chemical and biomedical engineering, materials and mechanical engineering, and various industrial applications. However, achieving accuracy, precision, and high throughput in the manipulation of nanometric objects, whether on the scale of a single nanometric entity or molecule, is a formidable challenge because of the extremely small dimensions involved. Nanofluidics has already demonstrated unique capabilities for transporting the mass of ions and small molecules at the nanoscale. We posit that chip-based nanofluidic devices provide potent strategies for the precise, accurate, and high-throughput manipulation of single nanometric entities and molecules, benefiting from their dimensions, which are comparable to those of nanometric objects. This article offers an overview of the current progress in nanofluidic manipulation of single nanometric objects. It also discusses the challenges in the development of nanofluidic manipulation technologies. Furthermore, the article explores future opportunities in the field, highlighting possible solutions to the challenges, and aims to contribute to the ongoing discourse on nanofluidic manipulation, thus propelling the field to overcome its current limitations.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"43 ","pages":"Pages 54-71"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924005587","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The manipulation of nanometric objects, encompassing both non-biological and biological objects, offers a transformative avenue for breakthroughs in diverse fields, such as chemistry, biology, chemical and biomedical engineering, materials and mechanical engineering, and various industrial applications. However, achieving accuracy, precision, and high throughput in the manipulation of nanometric objects, whether on the scale of a single nanometric entity or molecule, is a formidable challenge because of the extremely small dimensions involved. Nanofluidics has already demonstrated unique capabilities for transporting the mass of ions and small molecules at the nanoscale. We posit that chip-based nanofluidic devices provide potent strategies for the precise, accurate, and high-throughput manipulation of single nanometric entities and molecules, benefiting from their dimensions, which are comparable to those of nanometric objects. This article offers an overview of the current progress in nanofluidic manipulation of single nanometric objects. It also discusses the challenges in the development of nanofluidic manipulation technologies. Furthermore, the article explores future opportunities in the field, highlighting possible solutions to the challenges, and aims to contribute to the ongoing discourse on nanofluidic manipulation, thus propelling the field to overcome its current limitations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信