Structural characterization and chondroprotective activity evaluation of four novel polysaccharides purified from Anoectochilus zhejiangensis on transgenic fluorescent zebrafish

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Yi Tao , Lisha Shen , Wei Luo , Ping Wang
{"title":"Structural characterization and chondroprotective activity evaluation of four novel polysaccharides purified from Anoectochilus zhejiangensis on transgenic fluorescent zebrafish","authors":"Yi Tao ,&nbsp;Lisha Shen ,&nbsp;Wei Luo ,&nbsp;Ping Wang","doi":"10.1016/j.carbpol.2025.123319","DOIUrl":null,"url":null,"abstract":"<div><div><em>Anoectochilus zhejiangensis</em> (AZJ) exhibits notable anti-inflammatory and anti-swelling properties, making it a potential therapeutic agent for osteoarthritis. However, the specific component responsible for its anti-osteoarthritis effects remains unidentified. In this study, four novel polysaccharides were purified from <em>Anoectochilus zhejiangensis</em> (i.e., AZJP-1a, AZJP-2a, AZJP-2b, and AZJP-2c) through DEAE-cellulose 52 and Sephadex G-200 column chromatographic separation. Their structural and conformational characteristics were comprehensively analyzed. AZJP-1a and AZJP-2a owned high molecular weights of 387 kDa and 947 kDa, while AZJP-2b and AZJP-2c were comparatively lower at 3.989 kDa and 3.045 kDa. The polysaccharides contained predominantly <em>β</em>-glycosidic linkages over α-glycosidic linkages. AZJP-1a primarily consists of mannose, while AZJP-2a and AZJP-2b are rich in glucose, galactose, and arabinose, and AZJP-2c is mainly composed of glucose. Chondroprotective effects of these polysaccharides were evaluated using fluorescence imaging in transgenic fluorescent zebrafish (Tg Col2a1a: eGFP), with all four polysaccharides demonstrating significant cartilage repair activity, surpassing that of the positive control drug alendronate. Among them, AZJP-2c exhibited the most potent effect. The observed variations in their biological activities are likely attributed to differences in their structural compositions.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123319"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Anoectochilus zhejiangensis (AZJ) exhibits notable anti-inflammatory and anti-swelling properties, making it a potential therapeutic agent for osteoarthritis. However, the specific component responsible for its anti-osteoarthritis effects remains unidentified. In this study, four novel polysaccharides were purified from Anoectochilus zhejiangensis (i.e., AZJP-1a, AZJP-2a, AZJP-2b, and AZJP-2c) through DEAE-cellulose 52 and Sephadex G-200 column chromatographic separation. Their structural and conformational characteristics were comprehensively analyzed. AZJP-1a and AZJP-2a owned high molecular weights of 387 kDa and 947 kDa, while AZJP-2b and AZJP-2c were comparatively lower at 3.989 kDa and 3.045 kDa. The polysaccharides contained predominantly β-glycosidic linkages over α-glycosidic linkages. AZJP-1a primarily consists of mannose, while AZJP-2a and AZJP-2b are rich in glucose, galactose, and arabinose, and AZJP-2c is mainly composed of glucose. Chondroprotective effects of these polysaccharides were evaluated using fluorescence imaging in transgenic fluorescent zebrafish (Tg Col2a1a: eGFP), with all four polysaccharides demonstrating significant cartilage repair activity, surpassing that of the positive control drug alendronate. Among them, AZJP-2c exhibited the most potent effect. The observed variations in their biological activities are likely attributed to differences in their structural compositions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信