Structural characterization and chondroprotective activity evaluation of four novel polysaccharides purified from Anoectochilus zhejiangensis on transgenic fluorescent zebrafish
{"title":"Structural characterization and chondroprotective activity evaluation of four novel polysaccharides purified from Anoectochilus zhejiangensis on transgenic fluorescent zebrafish","authors":"Yi Tao , Lisha Shen , Wei Luo , Ping Wang","doi":"10.1016/j.carbpol.2025.123319","DOIUrl":null,"url":null,"abstract":"<div><div><em>Anoectochilus zhejiangensis</em> (AZJ) exhibits notable anti-inflammatory and anti-swelling properties, making it a potential therapeutic agent for osteoarthritis. However, the specific component responsible for its anti-osteoarthritis effects remains unidentified. In this study, four novel polysaccharides were purified from <em>Anoectochilus zhejiangensis</em> (i.e., AZJP-1a, AZJP-2a, AZJP-2b, and AZJP-2c) through DEAE-cellulose 52 and Sephadex G-200 column chromatographic separation. Their structural and conformational characteristics were comprehensively analyzed. AZJP-1a and AZJP-2a owned high molecular weights of 387 kDa and 947 kDa, while AZJP-2b and AZJP-2c were comparatively lower at 3.989 kDa and 3.045 kDa. The polysaccharides contained predominantly <em>β</em>-glycosidic linkages over α-glycosidic linkages. AZJP-1a primarily consists of mannose, while AZJP-2a and AZJP-2b are rich in glucose, galactose, and arabinose, and AZJP-2c is mainly composed of glucose. Chondroprotective effects of these polysaccharides were evaluated using fluorescence imaging in transgenic fluorescent zebrafish (Tg Col2a1a: eGFP), with all four polysaccharides demonstrating significant cartilage repair activity, surpassing that of the positive control drug alendronate. Among them, AZJP-2c exhibited the most potent effect. The observed variations in their biological activities are likely attributed to differences in their structural compositions.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123319"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Anoectochilus zhejiangensis (AZJ) exhibits notable anti-inflammatory and anti-swelling properties, making it a potential therapeutic agent for osteoarthritis. However, the specific component responsible for its anti-osteoarthritis effects remains unidentified. In this study, four novel polysaccharides were purified from Anoectochilus zhejiangensis (i.e., AZJP-1a, AZJP-2a, AZJP-2b, and AZJP-2c) through DEAE-cellulose 52 and Sephadex G-200 column chromatographic separation. Their structural and conformational characteristics were comprehensively analyzed. AZJP-1a and AZJP-2a owned high molecular weights of 387 kDa and 947 kDa, while AZJP-2b and AZJP-2c were comparatively lower at 3.989 kDa and 3.045 kDa. The polysaccharides contained predominantly β-glycosidic linkages over α-glycosidic linkages. AZJP-1a primarily consists of mannose, while AZJP-2a and AZJP-2b are rich in glucose, galactose, and arabinose, and AZJP-2c is mainly composed of glucose. Chondroprotective effects of these polysaccharides were evaluated using fluorescence imaging in transgenic fluorescent zebrafish (Tg Col2a1a: eGFP), with all four polysaccharides demonstrating significant cartilage repair activity, surpassing that of the positive control drug alendronate. Among them, AZJP-2c exhibited the most potent effect. The observed variations in their biological activities are likely attributed to differences in their structural compositions.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.