Initiatorless polymerization of mechanically robust hydrogels reinforced by cellulose of wood skeleton as multifunctional sensors

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Luzhen Wang , Jing Wei , Muqiu You , Yongcan Jin , Dagang Li , Zhaoyang Xu , Aiping Yu , Junshuai Li , Chuchu Chen
{"title":"Initiatorless polymerization of mechanically robust hydrogels reinforced by cellulose of wood skeleton as multifunctional sensors","authors":"Luzhen Wang ,&nbsp;Jing Wei ,&nbsp;Muqiu You ,&nbsp;Yongcan Jin ,&nbsp;Dagang Li ,&nbsp;Zhaoyang Xu ,&nbsp;Aiping Yu ,&nbsp;Junshuai Li ,&nbsp;Chuchu Chen","doi":"10.1016/j.carbpol.2025.123345","DOIUrl":null,"url":null,"abstract":"<div><div>Wood-based hydrogel with a unique anisotropic structure is an attractive soft-and-wet material. However, it remains a challenge to simultaneously achieve robust, multi-functional, and multi-response integrations through a sustainable and green approach. Herein, a bioinspired, additive-free method is reported to fabricate composite hydrogels reinforced by naturally high-strength wood skeleton without using any chemical initiators and crosslinking agents. Specifically, polymers (Polyacrylamide/Polyacrylic acid) are grafted from the surfaces of the aligned cellulose of wood skeleton, forming wood-based hydrogels under UV irradiation. Afterward, Fe<sup>3+</sup>-mediated physical crosslinking is employed further to construct chemically crosslinked poly(acrylamide-<em>co</em>-acrylic acid) networks. Therefore, the resulting initiatorless wood-based hydrogel with a dual-crosslinked network structure exhibits an ultra-high tensile strength of 42 MPa along the longitudinal direction, representing one of the strongest hydrogels ever reported. Furthermore, the wood-based hydrogels with inherent conductive properties appealing versatile sensations on strain, temperature, and light, which could serve as human-motion monitors (detection), thermo-electrochemical sensors, underwater wearable sensors, and smart-home systems. This work offers a green and promising strategy to fabricate robust, anisotropic, flexible, and ionically conductive wood-based hydrogels for multifunctional sensors with excellent performance in complex environments.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123345"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Wood-based hydrogel with a unique anisotropic structure is an attractive soft-and-wet material. However, it remains a challenge to simultaneously achieve robust, multi-functional, and multi-response integrations through a sustainable and green approach. Herein, a bioinspired, additive-free method is reported to fabricate composite hydrogels reinforced by naturally high-strength wood skeleton without using any chemical initiators and crosslinking agents. Specifically, polymers (Polyacrylamide/Polyacrylic acid) are grafted from the surfaces of the aligned cellulose of wood skeleton, forming wood-based hydrogels under UV irradiation. Afterward, Fe3+-mediated physical crosslinking is employed further to construct chemically crosslinked poly(acrylamide-co-acrylic acid) networks. Therefore, the resulting initiatorless wood-based hydrogel with a dual-crosslinked network structure exhibits an ultra-high tensile strength of 42 MPa along the longitudinal direction, representing one of the strongest hydrogels ever reported. Furthermore, the wood-based hydrogels with inherent conductive properties appealing versatile sensations on strain, temperature, and light, which could serve as human-motion monitors (detection), thermo-electrochemical sensors, underwater wearable sensors, and smart-home systems. This work offers a green and promising strategy to fabricate robust, anisotropic, flexible, and ionically conductive wood-based hydrogels for multifunctional sensors with excellent performance in complex environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
文献相关原料
公司名称
产品信息
阿拉丁
Acrylic acid
阿拉丁
Acrylamide
阿拉丁
Sodium hydroxide
阿拉丁
Sodium chlorite
阿拉丁
Ethanol
阿拉丁
Iron (II) chloride
阿拉丁
Iron (III) chloride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信