Coordinated transcriptional regulation of carbohydrate-related pathways contributes to the difference of starch accumulation between starchy cassava and sugary cassava

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Zehong Ding , Lili Fu , Ganlu Chen , Yan Yan , Weiwei Tie , Xianwei Meng , Jinghao Yang , Xianjin Qiu , Jiaming Zhang , Wei Hu
{"title":"Coordinated transcriptional regulation of carbohydrate-related pathways contributes to the difference of starch accumulation between starchy cassava and sugary cassava","authors":"Zehong Ding ,&nbsp;Lili Fu ,&nbsp;Ganlu Chen ,&nbsp;Yan Yan ,&nbsp;Weiwei Tie ,&nbsp;Xianwei Meng ,&nbsp;Jinghao Yang ,&nbsp;Xianjin Qiu ,&nbsp;Jiaming Zhang ,&nbsp;Wei Hu","doi":"10.1016/j.carbpol.2025.123314","DOIUrl":null,"url":null,"abstract":"<div><div>Cassava is a significant starchy root crop providing staple foods for millions of people globally. However, the metabolic differences and regulatory mechanisms underlying starch accumulation remain largely elusive in cassava. In this work, scanning electron microscopy, metabolome, and transcriptome were analyzed in parallel between starchy cassava (SC205) and sugary cassava (SM) during storage root (SR) development. Many carbohydrate-related metabolites (including fructose-6-phosphate and glucose-6-phosphate) were differentially accumulated between SC205 and SM. Further analysis unveiled coordinated metabolomic and transcriptomic changes in sucrose and starch metabolism, glycolysis and TCA cycle, lipid metabolism, and lignin and flavonoid biosynthesis during SR development, but with distinct abundance patterns between SC205 and SM. Specifically, bZIP2 could directly bind to the promoters of <em>APL1</em>, <em>ISA1</em>, and <em>GBSS1</em> and promote their expression levels in SC205, but these interactions were absent in SM. Transient silencing of <em>APL1</em>, <em>ISA1</em>, or <em>GBSS1</em> resulted in significant decreases in starch contents. Transient silencing of <em>bZIP2</em> suppressed the expression of <em>APL1</em>, <em>ISA1</em>, and <em>GBSS1</em>, and accordingly, decreased the starch contents. These results suggest a crucial contribution of coordinated regulation of carbohydrate-related pathways/genes to the difference of starch accumulation between starchy cassava and sugary cassava, providing useful information for starch improvement in the future.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123314"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725000955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cassava is a significant starchy root crop providing staple foods for millions of people globally. However, the metabolic differences and regulatory mechanisms underlying starch accumulation remain largely elusive in cassava. In this work, scanning electron microscopy, metabolome, and transcriptome were analyzed in parallel between starchy cassava (SC205) and sugary cassava (SM) during storage root (SR) development. Many carbohydrate-related metabolites (including fructose-6-phosphate and glucose-6-phosphate) were differentially accumulated between SC205 and SM. Further analysis unveiled coordinated metabolomic and transcriptomic changes in sucrose and starch metabolism, glycolysis and TCA cycle, lipid metabolism, and lignin and flavonoid biosynthesis during SR development, but with distinct abundance patterns between SC205 and SM. Specifically, bZIP2 could directly bind to the promoters of APL1, ISA1, and GBSS1 and promote their expression levels in SC205, but these interactions were absent in SM. Transient silencing of APL1, ISA1, or GBSS1 resulted in significant decreases in starch contents. Transient silencing of bZIP2 suppressed the expression of APL1, ISA1, and GBSS1, and accordingly, decreased the starch contents. These results suggest a crucial contribution of coordinated regulation of carbohydrate-related pathways/genes to the difference of starch accumulation between starchy cassava and sugary cassava, providing useful information for starch improvement in the future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信