Incompressible limit of compressible ideal MHD flows inside a perfectly conducting wall

IF 2.4 2区 数学 Q1 MATHEMATICS
Jiawei Wang , Junyan Zhang
{"title":"Incompressible limit of compressible ideal MHD flows inside a perfectly conducting wall","authors":"Jiawei Wang ,&nbsp;Junyan Zhang","doi":"10.1016/j.jde.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the incompressible limit of compressible ideal magnetohydrodynamic (MHD) flows in a reference domain where the magnetic field is tangential to the boundary. Unlike the case of transversal magnetic fields, the linearized problem of our case is not well-posed in standard Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>m</mi><mo>≥</mo><mn>2</mn><mo>)</mo></math></span>, while the incompressible problem is still well-posed in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. The key observation to overcome the difficulty is a hidden structure contributed by Lorentz force in the vorticity analysis, which reveals that one should trade one normal derivative for two tangential derivatives together with a gain of Mach number weight <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Thus, the energy functional should be defined by using suitable anisotropic Sobolev spaces. The weights of Mach number should be carefully chosen according to the number of tangential derivatives, such that the energy estimates are uniform in Mach number. Besides, part of the proof is similar to the study of compressible water waves, so our result opens the possibility to study the incompressible limit of free-boundary problems in ideal MHD.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"425 ","pages":"Pages 846-894"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500110X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the incompressible limit of compressible ideal magnetohydrodynamic (MHD) flows in a reference domain where the magnetic field is tangential to the boundary. Unlike the case of transversal magnetic fields, the linearized problem of our case is not well-posed in standard Sobolev space Hm(m2), while the incompressible problem is still well-posed in Hm. The key observation to overcome the difficulty is a hidden structure contributed by Lorentz force in the vorticity analysis, which reveals that one should trade one normal derivative for two tangential derivatives together with a gain of Mach number weight ε2. Thus, the energy functional should be defined by using suitable anisotropic Sobolev spaces. The weights of Mach number should be carefully chosen according to the number of tangential derivatives, such that the energy estimates are uniform in Mach number. Besides, part of the proof is similar to the study of compressible water waves, so our result opens the possibility to study the incompressible limit of free-boundary problems in ideal MHD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信