Long-time stability estimates for the non-periodic pendulum equation

IF 2.3 2区 数学 Q1 MATHEMATICS
Yaqi Liang, Xiong Li
{"title":"Long-time stability estimates for the non-periodic pendulum equation","authors":"Yaqi Liang,&nbsp;Xiong Li","doi":"10.1016/j.jde.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the non-periodic pendulum equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>+</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> are not required to be periodic in <em>t</em>. Under natural assumptions, the existence of infinitely many bounded solutions is established, furthermore, it is shown that, for any given unbounded solution <em>x</em>, there is a solution <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>ε</mi></mrow></msup></math></span> which is bounded and such that the half power of energies of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>ε</mi></mrow></msup></math></span> and <em>x</em> remain close on a time interval of length <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> small enough. In the end, a specific <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is constructed to illustrate the existence of the unbounded solution for the equation under this <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>; moreover, the long-time closeness result also holds under this <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"425 ","pages":"Pages 805-845"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the non-periodic pendulum equation x¨+Gx(t,x)=p(t), where Gx(t,x) and p(t) are not required to be periodic in t. Under natural assumptions, the existence of infinitely many bounded solutions is established, furthermore, it is shown that, for any given unbounded solution x, there is a solution xε which is bounded and such that the half power of energies of xε and x remain close on a time interval of length ε1 with ε>0 small enough. In the end, a specific p(t) is constructed to illustrate the existence of the unbounded solution for the equation under this p(t); moreover, the long-time closeness result also holds under this p(t).
非周期摆方程的长时间稳定性估计
本文考虑非周期摆方程x¨+Gx(t,x)=p(t),其中Gx(t,x)和p(t)不要求在t中是周期的。在自然假设下,建立了无穷多个有界解的存在性,并证明了对于任意给定的无界解x,存在一个有界解xε,使得xε和x的能量的半幂在ε−1的时间区间内保持接近,且ε>;0足够小。最后,构造了一个特定的p(t)来说明在这个p(t)下方程无界解的存在性;而且,在这个p(t)下,长时间的接近性结果也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信