{"title":"Explainable AI and stakes in medicine: A user study","authors":"Sam Baron , Andrew J. Latham , Somogy Varga","doi":"10.1016/j.artint.2025.104282","DOIUrl":null,"url":null,"abstract":"<div><div>The apparent downsides of opaque algorithms have led to a demand for explainable AI (XAI) methods by which a user might come to understand why an algorithm produced the particular output it did, given its inputs. Patients, for example, might find that the lack of explanation of the process underlying the algorithmic recommendations for diagnosis and treatment hinders their ability to provide informed consent. This paper examines the impact of two factors on user perceptions of explanations for AI systems in medical contexts. The factors considered were the <em>stakes</em> of the decision—high versus low—and the decision source—human versus AI. 484 participants were presented with vignettes in which medical diagnosis and treatment plan recommendations were made by humans or by AI. Separate vignettes were used for <em>high stakes</em> scenarios involving life-threatening diseases, and <em>low stakes</em> scenarios involving mild diseases. In each vignette, an explanation for the decision was given. Four explanation types were tested across separate vignettes: no explanation, counterfactual, causal and a novel ‘narrative-based’ explanation, not previously considered. This yielded a total of 16 conditions, of which each participant saw only one. Individuals were asked to evaluate the explanations they received based on helpfulness, understanding, consent, reliability, trust, interests and likelihood of undergoing treatment. We observed a main effect for stakes on all factors and a main effect for decision source on all factors except for helpfulness and likelihood to undergo treatment. While we observed effects for explanation on helpfulness, understanding, consent, reliability, trust and interests, we by and large did not see any differences between the effects of explanation types. This suggests that the effectiveness of explanations may not depend on type of explanation but instead, on the stakes and decision source.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"340 ","pages":"Article 104282"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000013","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The apparent downsides of opaque algorithms have led to a demand for explainable AI (XAI) methods by which a user might come to understand why an algorithm produced the particular output it did, given its inputs. Patients, for example, might find that the lack of explanation of the process underlying the algorithmic recommendations for diagnosis and treatment hinders their ability to provide informed consent. This paper examines the impact of two factors on user perceptions of explanations for AI systems in medical contexts. The factors considered were the stakes of the decision—high versus low—and the decision source—human versus AI. 484 participants were presented with vignettes in which medical diagnosis and treatment plan recommendations were made by humans or by AI. Separate vignettes were used for high stakes scenarios involving life-threatening diseases, and low stakes scenarios involving mild diseases. In each vignette, an explanation for the decision was given. Four explanation types were tested across separate vignettes: no explanation, counterfactual, causal and a novel ‘narrative-based’ explanation, not previously considered. This yielded a total of 16 conditions, of which each participant saw only one. Individuals were asked to evaluate the explanations they received based on helpfulness, understanding, consent, reliability, trust, interests and likelihood of undergoing treatment. We observed a main effect for stakes on all factors and a main effect for decision source on all factors except for helpfulness and likelihood to undergo treatment. While we observed effects for explanation on helpfulness, understanding, consent, reliability, trust and interests, we by and large did not see any differences between the effects of explanation types. This suggests that the effectiveness of explanations may not depend on type of explanation but instead, on the stakes and decision source.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.