InputJump: Augmented reality-facilitated cross-device input fusion based on spatial and semantic information

Q1 Computer Science
Xin Zeng , Xiaoyu Wang , Tengxiang Zhang , Yukang Yan , Yiqiang Chen
{"title":"InputJump: Augmented reality-facilitated cross-device input fusion based on spatial and semantic information","authors":"Xin Zeng ,&nbsp;Xiaoyu Wang ,&nbsp;Tengxiang Zhang ,&nbsp;Yukang Yan ,&nbsp;Yiqiang Chen","doi":"10.1016/j.vrih.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of computing devices requires seamless cross-device interactions. Augmented reality (AR) headsets can facilitate interactions with existing computers owing to their user-centered views and natural inputs. In this study, we propose InputJump, a user-centered cross-device input fusion method that maps multi-modal cross-device inputs to interactive elements on graphical interfaces. The input jump calculates the spatial coordinates of the input target positions and the interactive elements within the coordinate system of the AR headset. It also extracts semantic descriptions of inputs and elements using large language models (LLMs). Two types of information from different inputs (e.g., gaze, gesture, mouse, and keyboard) were fused to map onto an interactive element. The proposed method is explained in detail and implemented on both an AR headset and a desktop PC. We then conducted a user study and extensive simulations to validate our proposed method. The results showed that InputJump can accurately associate a fused input with the target interactive element, enabling a more natural and flexible interaction experience.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 6","pages":"Pages 502-526"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of computing devices requires seamless cross-device interactions. Augmented reality (AR) headsets can facilitate interactions with existing computers owing to their user-centered views and natural inputs. In this study, we propose InputJump, a user-centered cross-device input fusion method that maps multi-modal cross-device inputs to interactive elements on graphical interfaces. The input jump calculates the spatial coordinates of the input target positions and the interactive elements within the coordinate system of the AR headset. It also extracts semantic descriptions of inputs and elements using large language models (LLMs). Two types of information from different inputs (e.g., gaze, gesture, mouse, and keyboard) were fused to map onto an interactive element. The proposed method is explained in detail and implemented on both an AR headset and a desktop PC. We then conducted a user study and extensive simulations to validate our proposed method. The results showed that InputJump can accurately associate a fused input with the target interactive element, enabling a more natural and flexible interaction experience.
InputJump:增强现实促进了基于空间和语义信息的跨设备输入融合
计算设备的激增需要无缝的跨设备交互。增强现实(AR)耳机可以促进与现有计算机的交互,因为它们以用户为中心的视图和自然输入。在这项研究中,我们提出了InputJump,一种以用户为中心的跨设备输入融合方法,将多模态跨设备输入映射到图形界面上的交互元素。输入跳跃计算输入目标位置的空间坐标和AR头显坐标系统内的交互元素。它还使用大型语言模型(llm)提取输入和元素的语义描述。来自不同输入(例如,凝视、手势、鼠标和键盘)的两种类型的信息被融合到一个交互元素上。详细说明了该方法,并在AR头显和桌面PC上实现了该方法。然后,我们进行了用户研究和广泛的模拟来验证我们提出的方法。结果表明,InputJump可以准确地将融合输入与目标交互元素关联起来,从而实现更自然、更灵活的交互体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信