Pore-scale fluid distribution and remaining oil during tertiary low-salinity waterflooding in a carbonate

IF 6 1区 工程技术 Q2 ENERGY & FUELS
Chun-Yu Tong , Yong-Fei Yang , Qi Zhang , Gloire Imani , Lei Zhang , Hai Sun , Jun-Jie Zhong , Kai Zhang , Jun Yao
{"title":"Pore-scale fluid distribution and remaining oil during tertiary low-salinity waterflooding in a carbonate","authors":"Chun-Yu Tong ,&nbsp;Yong-Fei Yang ,&nbsp;Qi Zhang ,&nbsp;Gloire Imani ,&nbsp;Lei Zhang ,&nbsp;Hai Sun ,&nbsp;Jun-Jie Zhong ,&nbsp;Kai Zhang ,&nbsp;Jun Yao","doi":"10.1016/j.petsci.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Low-salinity waterflooding, as a promising enhanced oil recovery method, has exhibited exciting results in various experiments conducted at different scales. For carbonate rock, pore-scale understanding of the fluid distribution and remaining oil after low-salinity waterflooding is essential, especially the geometry and topology analysis of oil clusters. We performed the tertiary low-salinity waterflooding and employed X-ray micro-CT to probe the pore-scale displacement mechanism, fluid configuration, oil recovery, and remaining oil distribution. We found that the core becomes less oil-wet after low-salinity waterflooding. Furthermore, we analyzed the oil-rock and oil-brine interfacial areas to further support the wettability alteration. By comparing images after high-salinity waterflooding and low-salinity waterflooding, it is proven that wettability alteration has a significant impact on the behavior of the two-phase flow. Our research demonstrates that low-salinity waterflooding is an effective tertiary enhanced oil recovery technology in carbonate, which changes the wettability of rock and results in less film and singlet oil.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 6","pages":"Pages 4130-4140"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624002474","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-salinity waterflooding, as a promising enhanced oil recovery method, has exhibited exciting results in various experiments conducted at different scales. For carbonate rock, pore-scale understanding of the fluid distribution and remaining oil after low-salinity waterflooding is essential, especially the geometry and topology analysis of oil clusters. We performed the tertiary low-salinity waterflooding and employed X-ray micro-CT to probe the pore-scale displacement mechanism, fluid configuration, oil recovery, and remaining oil distribution. We found that the core becomes less oil-wet after low-salinity waterflooding. Furthermore, we analyzed the oil-rock and oil-brine interfacial areas to further support the wettability alteration. By comparing images after high-salinity waterflooding and low-salinity waterflooding, it is proven that wettability alteration has a significant impact on the behavior of the two-phase flow. Our research demonstrates that low-salinity waterflooding is an effective tertiary enhanced oil recovery technology in carbonate, which changes the wettability of rock and results in less film and singlet oil.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信