A review of carbon nanotubes in modern electrochemical energy storage

IF 5.7 3区 材料科学 Q2 Materials Science
Yao-ming Song , Shi-xin Qiu , Shu-xin Feng , Rui Zuo , Ya-ting Zhang , Ke Jia , Xue Xia , Ming-ming Chen , Ke-meng Ji , Cheng-yang Wang
{"title":"A review of carbon nanotubes in modern electrochemical energy storage","authors":"Yao-ming Song ,&nbsp;Shi-xin Qiu ,&nbsp;Shu-xin Feng ,&nbsp;Rui Zuo ,&nbsp;Ya-ting Zhang ,&nbsp;Ke Jia ,&nbsp;Xue Xia ,&nbsp;Ming-ming Chen ,&nbsp;Ke-meng Ji ,&nbsp;Cheng-yang Wang","doi":"10.1016/S1872-5805(24)60878-4","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for sustainable energy storage solutions is more critical than ever, with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources. Carbon nanotubes (CNTs), with their exceptional electrical conductivity and structural integrity, are at the forefront of this endeavor, offering promising ways for the advance of electrochemical energy storage (EES) devices. This review provides an analysis of the synthesis, properties, and applications of CNTs in the context of EES. We explore the evolution of CNT synthesis methods, including arc discharge, laser ablation, and chemical vapor deposition, and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure. We also examine the role of CNTs in improving the performance of various EES devices such as lithium-ion, lithium-metal, lithium-sulfur, sodium, and flexible batteries as well as supercapacitors. We underscore the challenges that remain, including the scalability of CNT synthesis and the integration of CNTs in electrode materials, and propose potential solutions and future research directions. The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the future of sustainable EES technologies.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1037-1074"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608784","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The quest for sustainable energy storage solutions is more critical than ever, with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources. Carbon nanotubes (CNTs), with their exceptional electrical conductivity and structural integrity, are at the forefront of this endeavor, offering promising ways for the advance of electrochemical energy storage (EES) devices. This review provides an analysis of the synthesis, properties, and applications of CNTs in the context of EES. We explore the evolution of CNT synthesis methods, including arc discharge, laser ablation, and chemical vapor deposition, and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure. We also examine the role of CNTs in improving the performance of various EES devices such as lithium-ion, lithium-metal, lithium-sulfur, sodium, and flexible batteries as well as supercapacitors. We underscore the challenges that remain, including the scalability of CNT synthesis and the integration of CNTs in electrode materials, and propose potential solutions and future research directions. The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the future of sustainable EES technologies.
碳纳米管在现代电化学储能中的研究进展
随着全球能源需求的增长以及从化石燃料向可再生能源过渡的紧迫性,寻求可持续能源存储解决方案比以往任何时候都更加重要。碳纳米管(CNTs)以其优异的导电性和结构完整性,处于这一努力的前沿,为电化学储能(EES)设备的发展提供了有希望的途径。本文综述了碳纳米管的合成、性质及其在EES中的应用。我们探讨了碳纳米管合成方法的发展,包括电弧放电、激光烧蚀和化学气相沉积,并重点介绍了金属-有机框架衍生的碳纳米管和具有三维有序大孔结构的新型碳纳米管聚集体的最新进展。我们还研究了碳纳米管在改善各种EES设备(如锂离子电池、锂金属电池、锂硫电池、钠电池和柔性电池以及超级电容器)性能方面的作用。我们强调了仍然存在的挑战,包括碳纳米管合成的可扩展性和碳纳米管在电极材料中的集成,并提出了潜在的解决方案和未来的研究方向。这篇综述从前瞻性的角度阐述了碳纳米管在塑造可持续EES技术未来中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信