Modeling of pyrolytic carbon deposition from propylene

IF 5.7 3区 材料科学 Q2 Materials Science
Wen-fang Fang , Jing-chao Yuan , Meng-qian Wang , Yu-qing Peng , Dan Zhang , Ai-jun Li
{"title":"Modeling of pyrolytic carbon deposition from propylene","authors":"Wen-fang Fang ,&nbsp;Jing-chao Yuan ,&nbsp;Meng-qian Wang ,&nbsp;Yu-qing Peng ,&nbsp;Dan Zhang ,&nbsp;Ai-jun Li","doi":"10.1016/S1872-5805(24)60893-0","DOIUrl":null,"url":null,"abstract":"<div><div>The intrinsic deposition rate of pyrolytic carbon from propylene was studied using a chemical vapor infiltration hot wall reactor at partial pressures of propylene from 3 kPa to 7 kPa, temperatures of 1 173 to 1 273 K, and a residence time of 1.1 s. The effect of the partial pressure of hydrogen on carbon deposition rate at different temperatures was studied at constant propylene partial pressures. A model of the deposition mechanism of propylene was established. The results show that the propylene deposition rate increases with increasing partial pressure, increased distance along the path and increasing temperature. Hydrogen inhibits the deposition. The deposition mechanism model shows that the reciprocal of the propylene deposition rate is linear with the reciprocal of the propylene concentration, and the reciprocal of the propylene deposition rate is linear with the hydrogen concentration. Comparing the experimental results of propylene deposition rate, the rationality of the model is proved and the kinetic parameters are calculated.</div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 6","pages":"Pages 1243-1248"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608930","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The intrinsic deposition rate of pyrolytic carbon from propylene was studied using a chemical vapor infiltration hot wall reactor at partial pressures of propylene from 3 kPa to 7 kPa, temperatures of 1 173 to 1 273 K, and a residence time of 1.1 s. The effect of the partial pressure of hydrogen on carbon deposition rate at different temperatures was studied at constant propylene partial pressures. A model of the deposition mechanism of propylene was established. The results show that the propylene deposition rate increases with increasing partial pressure, increased distance along the path and increasing temperature. Hydrogen inhibits the deposition. The deposition mechanism model shows that the reciprocal of the propylene deposition rate is linear with the reciprocal of the propylene concentration, and the reciprocal of the propylene deposition rate is linear with the hydrogen concentration. Comparing the experimental results of propylene deposition rate, the rationality of the model is proved and the kinetic parameters are calculated.
丙烯热解碳沉积模型
采用化学蒸汽渗透热壁反应器,在丙烯分压为3 ~ 7 kPa,温度为1 173 ~ 1 273 K,停留时间为1.1 s的条件下,研究了丙烯热解碳的本特征沉积速率。在丙烯分压不变的情况下,研究了不同温度下氢气分压对积碳速率的影响。建立了丙烯沉积机理模型。结果表明:丙烯沉积速率随分压的增大、路径距离的增大和温度的升高而增大;氢抑制沉积。沉积机理模型表明,丙烯沉积速率的倒数与丙烯浓度的倒数成线性关系,丙烯沉积速率的倒数与氢浓度成线性关系。对比丙烯沉积速率的实验结果,验证了模型的合理性,并计算了动力学参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信