The stable configuration for a single-atomic-layer-height disconnection on the {101¯1} twin boundary

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Y. Yue , H.Y. Song , J.F. Nie
{"title":"The stable configuration for a single-atomic-layer-height disconnection on the {101¯1} twin boundary","authors":"Y. Yue ,&nbsp;H.Y. Song ,&nbsp;J.F. Nie","doi":"10.1016/j.jma.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atomic-layer-height disconnections that connect with I<sub>1</sub> stacking faults are produced on <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin boundaries in pure magnesium through transmutation of basal 〈<em>a</em>〉 mixed dislocations across the twin boundaries, and their stabilities are examined using molecular dynamics simulations. The stable configuration for a single-atomic-layer-height disconnection is a pyramidal-basal (PyB) disconnection connecting an I<sub>1</sub> fault associated with a stacking sequence change of AB<u>A</u>CA, or a basal-pyramidal (BPy) disconnection connecting an I<sub>1</sub> fault associated with a stacking sequence change of BA<u>B</u>CB. A stable single-atomic-layer-height disconnection can transform to a less stable single-atomic-layer-height disconnection when its step orientation changes solely. A stable single-atomic-layer-height disconnection can also transform to another stable single-atomic-layer-height disconnection, when the step orientation of the disconnection and the type of the I<sub>1</sub> fault that connects with the disconnection change synchronously, and this process is accompanied with the emission of a Shockley partial dislocation from the twin boundary.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 12","pages":"Pages 4868-4876"},"PeriodicalIF":15.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724002548","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atomic-layer-height disconnections that connect with I1 stacking faults are produced on {101¯1} twin boundaries in pure magnesium through transmutation of basal 〈a〉 mixed dislocations across the twin boundaries, and their stabilities are examined using molecular dynamics simulations. The stable configuration for a single-atomic-layer-height disconnection is a pyramidal-basal (PyB) disconnection connecting an I1 fault associated with a stacking sequence change of ABACA, or a basal-pyramidal (BPy) disconnection connecting an I1 fault associated with a stacking sequence change of BABCB. A stable single-atomic-layer-height disconnection can transform to a less stable single-atomic-layer-height disconnection when its step orientation changes solely. A stable single-atomic-layer-height disconnection can also transform to another stable single-atomic-layer-height disconnection, when the step orientation of the disconnection and the type of the I1 fault that connects with the disconnection change synchronously, and this process is accompanied with the emission of a Shockley partial dislocation from the twin boundary.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信