Zaine Perry , Ramontsheng Rapolaki , Sarah Roffe , Moagabo Ragoasha
{"title":"Analysing the atmospheric-oceanic conditions driving the sustained long track and intensity of Tropical Cyclone Freddy","authors":"Zaine Perry , Ramontsheng Rapolaki , Sarah Roffe , Moagabo Ragoasha","doi":"10.1016/j.tcrr.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>During February–March 2023, the record-breaking tropical cyclone (TC) Freddy caused widespread flooding and damages across southeastern Africa. While <5 % of TCs make landfall into southern Africa, TC Freddy made landfall twice and is the only TC in the past two decades that has tracked over 8000 km across the entire southern Indian Ocean. To understand why TC Freddy was so unique, this study investigated the evolution, track and atmospheric-oceanic mechanisms driving TC Freddy using the ERA5, CFSv2, OSTIA, NCEP-NCAR datasets and track data from various sources. It was found that SSTs were >27 °C during TC Freddy’s lifetime, while TC Dingani and a split Mascarene High played a role in steering TC Freddy across the southern Indian Ocean. Leading up to the development of TC Freddy, conditions were favourable for TC genesis, as indicated by the levels of the Genesis Potential Parameter (GPP) and its modified version (GPPI), the tropical cyclone heat potential levels, and elevated SSTs. Ridging subtropical anticyclones and the Mascarene High alongside favourable steering flow and GPP (and GPPI) conditions resulted in Freddy’s double landfall in Mozambique. In assessing the tracks, it was found that there are discrepancies in the track of the commonly used IBTrACS when compared to ERA5 and RSMC tracks, which has implications for impact studies due to the underestimation of landfall considerations. This study reveals the unique characteristics and atmospheric-oceanic mechanisms driving TC Freddy, emphasising the importance of accurate representation of favourable conditions and track data for enhancing TC forecasting and impact assessments.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 4","pages":"Pages 356-388"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000626","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
During February–March 2023, the record-breaking tropical cyclone (TC) Freddy caused widespread flooding and damages across southeastern Africa. While <5 % of TCs make landfall into southern Africa, TC Freddy made landfall twice and is the only TC in the past two decades that has tracked over 8000 km across the entire southern Indian Ocean. To understand why TC Freddy was so unique, this study investigated the evolution, track and atmospheric-oceanic mechanisms driving TC Freddy using the ERA5, CFSv2, OSTIA, NCEP-NCAR datasets and track data from various sources. It was found that SSTs were >27 °C during TC Freddy’s lifetime, while TC Dingani and a split Mascarene High played a role in steering TC Freddy across the southern Indian Ocean. Leading up to the development of TC Freddy, conditions were favourable for TC genesis, as indicated by the levels of the Genesis Potential Parameter (GPP) and its modified version (GPPI), the tropical cyclone heat potential levels, and elevated SSTs. Ridging subtropical anticyclones and the Mascarene High alongside favourable steering flow and GPP (and GPPI) conditions resulted in Freddy’s double landfall in Mozambique. In assessing the tracks, it was found that there are discrepancies in the track of the commonly used IBTrACS when compared to ERA5 and RSMC tracks, which has implications for impact studies due to the underestimation of landfall considerations. This study reveals the unique characteristics and atmospheric-oceanic mechanisms driving TC Freddy, emphasising the importance of accurate representation of favourable conditions and track data for enhancing TC forecasting and impact assessments.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones