Fracture analysis in quasi-brittle materials via an adaptive cohesive interface model

Umberto De Maio , Daniele Gaetano , Fabrizio Greco , Paolo Lonetti , Paolo Nevone Blasi , Aandrea Pranno
{"title":"Fracture analysis in quasi-brittle materials via an adaptive cohesive interface model","authors":"Umberto De Maio ,&nbsp;Daniele Gaetano ,&nbsp;Fabrizio Greco ,&nbsp;Paolo Lonetti ,&nbsp;Paolo Nevone Blasi ,&nbsp;Aandrea Pranno","doi":"10.1016/j.prostr.2024.11.102","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced numerical model for simulating fracture propagation in heterogeneous materials utilizing an inter-element cohesive zone approach combined with the Arbitrary Lagrangian-Eulerian (ALE) kinematic description. In particular, the proposed methodology uses the moving mesh technique to adjust the computational domain so that the crack segment, selected once a suitable stress criterion for fracture onset is satisfied, is aligned to the computed crack propagation direction. Subsequently, a zero-thickness interface cohesive element, equipped with a traction-separation law, is inserted on-the-fly along the crack segment to describe the nonlinear fracture process. Despite the recent fracture models, the proposed framework allows the multiple crack onset and propagation without requiring mesh updated procedures and sensibly reduces the well-known mesh dependency issues of alternative discrete fracture approaches. Numerical analyses have been performed to validate the proposed model, involving quasi-brittle heterogeneous materials like fiber-reinforced concrete subjected to different loading conditions. Comparisons with available experimental and numerical results have highlighted the effectiveness and reliability of the proposed model in the prediction of fracture in quasi-brittle materials.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"66 ","pages":"Pages 495-501"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624011570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an advanced numerical model for simulating fracture propagation in heterogeneous materials utilizing an inter-element cohesive zone approach combined with the Arbitrary Lagrangian-Eulerian (ALE) kinematic description. In particular, the proposed methodology uses the moving mesh technique to adjust the computational domain so that the crack segment, selected once a suitable stress criterion for fracture onset is satisfied, is aligned to the computed crack propagation direction. Subsequently, a zero-thickness interface cohesive element, equipped with a traction-separation law, is inserted on-the-fly along the crack segment to describe the nonlinear fracture process. Despite the recent fracture models, the proposed framework allows the multiple crack onset and propagation without requiring mesh updated procedures and sensibly reduces the well-known mesh dependency issues of alternative discrete fracture approaches. Numerical analyses have been performed to validate the proposed model, involving quasi-brittle heterogeneous materials like fiber-reinforced concrete subjected to different loading conditions. Comparisons with available experimental and numerical results have highlighted the effectiveness and reliability of the proposed model in the prediction of fracture in quasi-brittle materials.
基于自适应内聚界面模型的准脆性材料断裂分析
本文利用单元间内聚区方法结合任意拉格朗日-欧拉(ALE)运动学描述,提出了一种先进的模拟非均质材料断裂扩展的数值模型。特别地,该方法使用移动网格技术调整计算域,以便在满足合适的破裂开始应力准则时选择裂纹段,使其与计算的裂纹扩展方向对齐。随后,沿裂纹段动态插入具有牵引-分离规律的零厚度界面黏结单元,描述非线性断裂过程。尽管有最新的断裂模型,但所提出的框架允许多个裂纹的开始和扩展,而不需要更新网格程序,并显着减少了其他离散断裂方法中众所周知的网格依赖问题。数值分析验证了提出的模型,包括准脆性非均质材料,如纤维增强混凝土,在不同的加载条件下。通过与已有的实验和数值结果的比较,表明了该模型在准脆性材料断裂预测中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信