High-precision urban rail map construction based on multi-sensor fusion

Zhihong Huang , Ruipeng Gao , Zejing Xu , Yiqing Liu , Zongru Ma , Dan Tao
{"title":"High-precision urban rail map construction based on multi-sensor fusion","authors":"Zhihong Huang ,&nbsp;Ruipeng Gao ,&nbsp;Zejing Xu ,&nbsp;Yiqing Liu ,&nbsp;Zongru Ma ,&nbsp;Dan Tao","doi":"10.1016/j.hspr.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of high-precision urban rail maps is crucial for the safe and efficient operation of railway transportation systems. However, the repetitive features and sparse textures in urban rail environments pose challenges for map construction with high-precision. Motivated by this, this paper proposes a high-precision urban rail map construction algorithm based on multi-sensor fusion. The algorithm integrates laser radar and Inertial Measurement Unit (IMU) data to construct the geometric structure map of the urban rail. It utilizes image point-line features and color information to improve map accuracy by minimizing photometric errors and incorporating color information, thus generating high-precision maps. Experimental results on a real urban rail dataset demonstrate that the proposed algorithm achieves root mean square errors of 0.345 and 1.033 m for ground and tunnel scenes, respectively, representing a 19.31 % and 56.80 % improvement compared to state-of-the-art methods.</div></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"2 4","pages":"Pages 265-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949867824000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of high-precision urban rail maps is crucial for the safe and efficient operation of railway transportation systems. However, the repetitive features and sparse textures in urban rail environments pose challenges for map construction with high-precision. Motivated by this, this paper proposes a high-precision urban rail map construction algorithm based on multi-sensor fusion. The algorithm integrates laser radar and Inertial Measurement Unit (IMU) data to construct the geometric structure map of the urban rail. It utilizes image point-line features and color information to improve map accuracy by minimizing photometric errors and incorporating color information, thus generating high-precision maps. Experimental results on a real urban rail dataset demonstrate that the proposed algorithm achieves root mean square errors of 0.345 and 1.033 m for ground and tunnel scenes, respectively, representing a 19.31 % and 56.80 % improvement compared to state-of-the-art methods.
基于多传感器融合的高精度城市轨道地图构建
高精度城市轨道地图的建设对轨道交通系统的安全、高效运行至关重要。然而,城市轨道环境的重复特征和稀疏纹理为高精度地图构建带来了挑战。基于此,本文提出了一种基于多传感器融合的高精度城市轨道地图绘制算法。该算法将激光雷达和惯性测量单元(IMU)数据相结合,构建城市轨道几何结构图。它利用图像点线特征和颜色信息,通过最小化光度误差和融合颜色信息来提高地图精度,从而生成高精度地图。在真实城市轨道数据集上的实验结果表明,该算法在地面和隧道场景下的均方根误差分别为0.345和1.033 m,与现有方法相比,分别提高了19.31 %和56.80 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信