Dynamic response of high-speed railway vehicle and welded turnout on large-span bridges based on rigid-flexible coupling system

Xiaopei Cai , Zijie Zhong , Albert Lau , Qian Zhang , Yue Hou
{"title":"Dynamic response of high-speed railway vehicle and welded turnout on large-span bridges based on rigid-flexible coupling system","authors":"Xiaopei Cai ,&nbsp;Zijie Zhong ,&nbsp;Albert Lau ,&nbsp;Qian Zhang ,&nbsp;Yue Hou","doi":"10.1016/j.hspr.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Welded Turnout on Large-span Bridge (WTLB) is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway (HSR). Understanding the coupling dynamic response of the vehicle and WTLB is essential. Previous research did not consider the dynamic behavior of foundations, leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response, particularly when turnouts were laid on large-span bridges. This study proposes a novel modeling method that includes the foundations, to overcome the previous shortcomings by applying a rigid-flexible coupling system. In this approach, the vehicle was modeled as a rigid body sub-model in a Multi-Body Software (MBS), while WTLB was modeled as a flexible bodies sub-model using Finite Element (FE) software. The modal information from the FE model was imported into the MBS software. The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic (VRCD) calculation model was established and it was discovered that the calculation results showed good agreement with the field test data. Through the VRCD model, the safety of the structure, the stability of the vehicle and the comfort of passengers were investigated, as well as several important infrastructure factors. The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.</div></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"2 4","pages":"Pages 203-218"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294986782400059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Welded Turnout on Large-span Bridge (WTLB) is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway (HSR). Understanding the coupling dynamic response of the vehicle and WTLB is essential. Previous research did not consider the dynamic behavior of foundations, leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response, particularly when turnouts were laid on large-span bridges. This study proposes a novel modeling method that includes the foundations, to overcome the previous shortcomings by applying a rigid-flexible coupling system. In this approach, the vehicle was modeled as a rigid body sub-model in a Multi-Body Software (MBS), while WTLB was modeled as a flexible bodies sub-model using Finite Element (FE) software. The modal information from the FE model was imported into the MBS software. The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic (VRCD) calculation model was established and it was discovered that the calculation results showed good agreement with the field test data. Through the VRCD model, the safety of the structure, the stability of the vehicle and the comfort of passengers were investigated, as well as several important infrastructure factors. The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信