HPGCN: A graph convolutional network-based prediction model for herbal heat/cold properties

IF 5.4 Q1 PLANT SCIENCES
Qikai Niu , Jing’ai Wang , Hongtao Li , Lin Tong , Haiyu Xu , Weina Zhang , Ziling Zeng , Sihong Liu , Wenjing Zong , Siqi Zhang , Siwei Tian , Huamin Zhang , Bing Li
{"title":"HPGCN: A graph convolutional network-based prediction model for herbal heat/cold properties","authors":"Qikai Niu ,&nbsp;Jing’ai Wang ,&nbsp;Hongtao Li ,&nbsp;Lin Tong ,&nbsp;Haiyu Xu ,&nbsp;Weina Zhang ,&nbsp;Ziling Zeng ,&nbsp;Sihong Liu ,&nbsp;Wenjing Zong ,&nbsp;Siqi Zhang ,&nbsp;Siwei Tian ,&nbsp;Huamin Zhang ,&nbsp;Bing Li","doi":"10.1016/j.cpb.2025.100448","DOIUrl":null,"url":null,"abstract":"<div><div>Herbal properties are part of the fundamental theories of traditional Chinese medicine (TCM), which has been of great significance for herbal formulas and disease treatment in clinics for thousands of years. However, determining herbal properties, such as heat/cold, still relies on ancient books and the doctor's experience, which can present significant limitations. In this study, we propose an herbal property graph convolutional network (HPGCN) model by combining TCM theory, modern pharmacological mechanisms, prior knowledge of herbal properties, and intelligent algorithms, which can effectively predict herbal heat/cold properties. Based on protein-protein interactions (PPI) and herb-herb networks, 30 target genes were selected as features for herbal heat/cold property prediction. Compared to previous machine learning algorithms, the HPGCN obtained optimal classification prediction results for ACC, Recall, Precision, F1, and AUC indicators by 5-fold cross-validation on the training and test sets. The function of herbs predicted by HPGCN improved by 3 % in hit@k compared to predictions that did not account for herbal properties. Herbs with disputed heat/cold properties in ancient books (such as <em>Pulsatilliae Radix</em> and <em>Menthae Herba</em>) were predicted using recommended property probabilities. The proposed HPGCN model may have profound practical value and significance for elucidating the scientific mechanisms of herbal property theory and in herbal medicine development.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"41 ","pages":"Article 100448"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Herbal properties are part of the fundamental theories of traditional Chinese medicine (TCM), which has been of great significance for herbal formulas and disease treatment in clinics for thousands of years. However, determining herbal properties, such as heat/cold, still relies on ancient books and the doctor's experience, which can present significant limitations. In this study, we propose an herbal property graph convolutional network (HPGCN) model by combining TCM theory, modern pharmacological mechanisms, prior knowledge of herbal properties, and intelligent algorithms, which can effectively predict herbal heat/cold properties. Based on protein-protein interactions (PPI) and herb-herb networks, 30 target genes were selected as features for herbal heat/cold property prediction. Compared to previous machine learning algorithms, the HPGCN obtained optimal classification prediction results for ACC, Recall, Precision, F1, and AUC indicators by 5-fold cross-validation on the training and test sets. The function of herbs predicted by HPGCN improved by 3 % in hit@k compared to predictions that did not account for herbal properties. Herbs with disputed heat/cold properties in ancient books (such as Pulsatilliae Radix and Menthae Herba) were predicted using recommended property probabilities. The proposed HPGCN model may have profound practical value and significance for elucidating the scientific mechanisms of herbal property theory and in herbal medicine development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信