Properties of low-density SiO2 aerogels prepared based on the phase separation method

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Lili Wang, Hongkai Zhao, Lei Chen, Haiyan Wang, Zhaotao Sun, Shunyu Cui
{"title":"Properties of low-density SiO2 aerogels prepared based on the phase separation method","authors":"Lili Wang,&nbsp;Hongkai Zhao,&nbsp;Lei Chen,&nbsp;Haiyan Wang,&nbsp;Zhaotao Sun,&nbsp;Shunyu Cui","doi":"10.1016/j.jssc.2025.125237","DOIUrl":null,"url":null,"abstract":"<div><div>To solve the problems of frequent solvent substitution and the high cost of modifiers in the process of aerogel preparation, this study proposed a modification method based on the combination of one-pot technology and phase separation technology, using polyoxydisiloxane (PEDS) as a precursor, with a small amount of n-hexane and Hexamethyldisiloxane(HMDSO) added in-situ, and n-hexane as the aging solution, followed by the addition of trimethylchlorosilane (TMCS), and trimethylethoxysilane (TMES) mixed in one pot for modification, after the end of modification to the mixed solution to the silicon ratio of 2.1 of water, water molecules were weakened by the role of the mutual solubility between ethanol and n-hexane, breaking the ternary phase equilibrium. The upward migration of hexane droplets was observed by microscopy, which led to the precipitation of ethanol from the system. Finally, a low-density SiO<sub>2</sub> aerogel powder was prepared by drying at atmospheric pressure and room temperature. Therefore, the phase separation method can be used to dry the gel under atmospheric pressure, avoiding the need for multiple solvent substitutions and hydrophobic modification in the traditional method. Under the most economical conditions for the use of pharmaceuticals, the silica aerogel powder synthesised by TMCS and TMES at a molar ratio of 1:2 can have a density as low as 0.0785g/cm³, a thermal conductivity as low as 0.0223 W/(m∙K), and a specific surface area as high as 837m<sup>2</sup>/g. Therefore, the phase separation method opens up a new pathway for the high-efficiency synthesis of silica aerogel powders, which makes aerogel products play a greater role in the field of thermal insulation.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"345 ","pages":"Article 125237"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002245962500060X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problems of frequent solvent substitution and the high cost of modifiers in the process of aerogel preparation, this study proposed a modification method based on the combination of one-pot technology and phase separation technology, using polyoxydisiloxane (PEDS) as a precursor, with a small amount of n-hexane and Hexamethyldisiloxane(HMDSO) added in-situ, and n-hexane as the aging solution, followed by the addition of trimethylchlorosilane (TMCS), and trimethylethoxysilane (TMES) mixed in one pot for modification, after the end of modification to the mixed solution to the silicon ratio of 2.1 of water, water molecules were weakened by the role of the mutual solubility between ethanol and n-hexane, breaking the ternary phase equilibrium. The upward migration of hexane droplets was observed by microscopy, which led to the precipitation of ethanol from the system. Finally, a low-density SiO2 aerogel powder was prepared by drying at atmospheric pressure and room temperature. Therefore, the phase separation method can be used to dry the gel under atmospheric pressure, avoiding the need for multiple solvent substitutions and hydrophobic modification in the traditional method. Under the most economical conditions for the use of pharmaceuticals, the silica aerogel powder synthesised by TMCS and TMES at a molar ratio of 1:2 can have a density as low as 0.0785g/cm³, a thermal conductivity as low as 0.0223 W/(m∙K), and a specific surface area as high as 837m2/g. Therefore, the phase separation method opens up a new pathway for the high-efficiency synthesis of silica aerogel powders, which makes aerogel products play a greater role in the field of thermal insulation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信