Modeling of dissolution phenomena in Cu-Cl Cycle for hydrogen production

Q1 Chemical Engineering
Öznur Kayhan , Ibrahim Dincer
{"title":"Modeling of dissolution phenomena in Cu-Cl Cycle for hydrogen production","authors":"Öznur Kayhan ,&nbsp;Ibrahim Dincer","doi":"10.1016/j.ijft.2025.101123","DOIUrl":null,"url":null,"abstract":"<div><div>The dissolution process of cuprous chloride (CuCl) in aqueous hydrochloric acid (HCl<sub>(aq)</sub>) is one of the crucial intermediary steps in the thermochemical water splitting cycle to produce hydrogen. A mass transfer model for dissolution process presented in this paper has been developed based on Noyes Whitney equation which is dependent on concentration gradient across the boundary layer and solute's remaining surface area. The concentration variation and remaining surface area of CuCl in 6 M and 9 M HCl<sub>(aq)</sub> have been observed with time and mass transfer coefficient has been calculated with and without mixing during the dissolution. The mass transfer coefficient of CuCl dissolution in 6 M HCl without mixing effect has been calculated as 0,29.10<sup>−5</sup> m/s while mass transfer coefficient of dissolution with mixing effect as 1,09.10<sup>−5</sup> m/s. This indicates that mixing the solution can increase the mass transfer rate and reduce the dissolution time. The proposed mass transfer model has been verified with previous experimental data obtained from the literature and exhibited exceptionally good agreement. Further results obtained from the simulation study have been discussed in detail.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101123"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The dissolution process of cuprous chloride (CuCl) in aqueous hydrochloric acid (HCl(aq)) is one of the crucial intermediary steps in the thermochemical water splitting cycle to produce hydrogen. A mass transfer model for dissolution process presented in this paper has been developed based on Noyes Whitney equation which is dependent on concentration gradient across the boundary layer and solute's remaining surface area. The concentration variation and remaining surface area of CuCl in 6 M and 9 M HCl(aq) have been observed with time and mass transfer coefficient has been calculated with and without mixing during the dissolution. The mass transfer coefficient of CuCl dissolution in 6 M HCl without mixing effect has been calculated as 0,29.10−5 m/s while mass transfer coefficient of dissolution with mixing effect as 1,09.10−5 m/s. This indicates that mixing the solution can increase the mass transfer rate and reduce the dissolution time. The proposed mass transfer model has been verified with previous experimental data obtained from the literature and exhibited exceptionally good agreement. Further results obtained from the simulation study have been discussed in detail.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信