Forecasting municipal solid waste generation and composition using machine learning and GIS techniques: A case study of Cape Coast, Ghana

Theophilus Frimpong Adu , Lena Dzifa Mensah , Mizpah Ama Dziedzorm Rockson , Francis Kemausuor
{"title":"Forecasting municipal solid waste generation and composition using machine learning and GIS techniques: A case study of Cape Coast, Ghana","authors":"Theophilus Frimpong Adu ,&nbsp;Lena Dzifa Mensah ,&nbsp;Mizpah Ama Dziedzorm Rockson ,&nbsp;Francis Kemausuor","doi":"10.1016/j.clwas.2025.100218","DOIUrl":null,"url":null,"abstract":"<div><div>As developing countries grow and urbanize quickly, the amount of waste they produce is increasing, leading to significant challenges for waste management. This study employs machine learning techniques to predict municipal solid waste (MSW) composition and generation rates in Cape Coast, Ghana, integrating socioeconomic and geospatial variables to support the development of effective waste-to-energy (WtE) adoption strategies. The research utilized correlation analysis and three machine learning models: Linear Regression, Random Forest, and Long Short-Term Memory networks. The correlation analysis revealed strong positive relationships between population, built area, and daily waste generation (Pearson's r &gt; 0.85), while temperature variables showed minimal correlation. Among the models evaluated, Random Forest demonstrated superior performance, achieving an R-squared score of 0.9915 and the lowest error metrics (MAE: 0.0422, MSE: 0.0077). Feature importance analysis identified population and built area as the most critical factors influencing waste generation, with importance scores of 0.508 and 0.483, respectively. These findings underscore the significant impact of urbanization on waste production and the need for integrated urban planning and waste management strategies. The results provide valuable insights for policymakers and urban planners, highlighting the necessity for waste management infrastructure to scale with urban growth. Nonetheless, the lack of gross domestic data (GDP) data limits the comprehensiveness of the analysis and may affect the forecasting accuracy. Future studies would benefit from exploring alternative economic indicators for a more comprehensive approach to waste management planning, especially in regions with scarce data. The study demonstrates the efficacy of machine learning approaches in predicting MSW dynamics, offering a robust tool for developing targeted WtE adoption strategies in rapidly urbanizing African contexts.</div></div>","PeriodicalId":100256,"journal":{"name":"Cleaner Waste Systems","volume":"10 ","pages":"Article 100218"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Waste Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772912525000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As developing countries grow and urbanize quickly, the amount of waste they produce is increasing, leading to significant challenges for waste management. This study employs machine learning techniques to predict municipal solid waste (MSW) composition and generation rates in Cape Coast, Ghana, integrating socioeconomic and geospatial variables to support the development of effective waste-to-energy (WtE) adoption strategies. The research utilized correlation analysis and three machine learning models: Linear Regression, Random Forest, and Long Short-Term Memory networks. The correlation analysis revealed strong positive relationships between population, built area, and daily waste generation (Pearson's r > 0.85), while temperature variables showed minimal correlation. Among the models evaluated, Random Forest demonstrated superior performance, achieving an R-squared score of 0.9915 and the lowest error metrics (MAE: 0.0422, MSE: 0.0077). Feature importance analysis identified population and built area as the most critical factors influencing waste generation, with importance scores of 0.508 and 0.483, respectively. These findings underscore the significant impact of urbanization on waste production and the need for integrated urban planning and waste management strategies. The results provide valuable insights for policymakers and urban planners, highlighting the necessity for waste management infrastructure to scale with urban growth. Nonetheless, the lack of gross domestic data (GDP) data limits the comprehensiveness of the analysis and may affect the forecasting accuracy. Future studies would benefit from exploring alternative economic indicators for a more comprehensive approach to waste management planning, especially in regions with scarce data. The study demonstrates the efficacy of machine learning approaches in predicting MSW dynamics, offering a robust tool for developing targeted WtE adoption strategies in rapidly urbanizing African contexts.
使用机器学习和地理信息系统技术预测城市固体废物的产生和组成:加纳海岸角的案例研究
随着发展中国家的快速增长和城市化,它们产生的废物数量正在增加,给废物管理带来了重大挑战。本研究采用机器学习技术预测加纳海岸角的城市固体废物(MSW)组成和产生率,整合社会经济和地理空间变量,以支持制定有效的废物转化为能源(WtE)采用战略。该研究利用相关性分析和三种机器学习模型:线性回归、随机森林和长短期记忆网络。相关分析显示,人口、建筑面积与日垃圾产生量呈正相关关系(Pearson’s r >; 0.85),而温度变量相关性最小。在评估的模型中,Random Forest表现出优异的性能,其r平方得分为0.9915,误差指标最低(MAE: 0.0422, MSE: 0.0077)。特征重要性分析发现,人口和建成区面积是影响垃圾产生的最关键因素,重要性得分分别为0.508和0.483。这些调查结果强调了城市化对废物产生的重大影响以及综合城市规划和废物管理战略的必要性。研究结果为政策制定者和城市规划者提供了有价值的见解,强调了废物管理基础设施与城市增长同步的必要性。然而,国内生产总值(GDP)数据的缺乏限制了分析的全面性,并可能影响预测的准确性。今后的研究将受益于探索对废物管理规划采取更全面办法的其他经济指标,特别是在数据匮乏的区域。该研究证明了机器学习方法在预测城市垃圾动态方面的有效性,为在快速城市化的非洲环境中制定有针对性的城市垃圾采用策略提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信