Superhydrophobic sponge-like chitosan/CNTs/silica composite for selective oil absorption and efficient separation of water-in-oil emulsion

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Chu Xu , Huaqiang He , Yuan Wang , Yaoqi Huang , Tian C. Zhang , Shaojun Yuan
{"title":"Superhydrophobic sponge-like chitosan/CNTs/silica composite for selective oil absorption and efficient separation of water-in-oil emulsion","authors":"Chu Xu ,&nbsp;Huaqiang He ,&nbsp;Yuan Wang ,&nbsp;Yaoqi Huang ,&nbsp;Tian C. Zhang ,&nbsp;Shaojun Yuan","doi":"10.1016/j.carbpol.2025.123256","DOIUrl":null,"url":null,"abstract":"<div><div>Developing state-of-the-art materials with durability, superhydrophobicity, and superoleophilicity is essential for effective cleanup of oil spills and the treatment of oily wastewater. In this study, a novel superhydrophobic/superoleophilic chitosan-based composite was created by incorporating carbon nanotubes (CNTs) into a chitosan (CS) matrix and depositing superhydrophobic SiO<sub>2</sub> nanoparticles, forming a sponge-like absorbent (SH-SiO<sub>2</sub>@3CNTs/CS) for selective oil absorption and efficient oil/water separation. The optimal CNTs incorporation was comprehensively investigated to enhance the structural stability and mechanical strength of the chitosan/CNTs/silica composite. The size and loading of in-situ-grown SiO<sub>2</sub> nanoparticles on the chitosan/CNTs composite surface were identified as crucial factors in achieving surface superhydrophobicity. The optimized SH-SiO<sub>2</sub>@3CNTs/CS, with its three-dimensional porous structure, exhibited not only superhydrophobicity and superoleophilicity, but also high chemical stability, excellent resistance to high temperature and friction. Notably, the SH-SiO<sub>2</sub>@3CNTs/CS composite effectively absorbed oil with a capacity of up to 18.24 times its own weight and selectively separated oil/water mixtures and water-in-oil emulsions, achieving a separation efficiency of exceeding 97 % under vacuum pump conditions. This study not only introduces a novel approach for developing superoleophilic chitosan-based sponge-like composite materials, but also presents a promising strategy for selective oil absorption and efficient separation of water-in-oil emulsions.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"353 ","pages":"Article 123256"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725000372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Developing state-of-the-art materials with durability, superhydrophobicity, and superoleophilicity is essential for effective cleanup of oil spills and the treatment of oily wastewater. In this study, a novel superhydrophobic/superoleophilic chitosan-based composite was created by incorporating carbon nanotubes (CNTs) into a chitosan (CS) matrix and depositing superhydrophobic SiO2 nanoparticles, forming a sponge-like absorbent (SH-SiO2@3CNTs/CS) for selective oil absorption and efficient oil/water separation. The optimal CNTs incorporation was comprehensively investigated to enhance the structural stability and mechanical strength of the chitosan/CNTs/silica composite. The size and loading of in-situ-grown SiO2 nanoparticles on the chitosan/CNTs composite surface were identified as crucial factors in achieving surface superhydrophobicity. The optimized SH-SiO2@3CNTs/CS, with its three-dimensional porous structure, exhibited not only superhydrophobicity and superoleophilicity, but also high chemical stability, excellent resistance to high temperature and friction. Notably, the SH-SiO2@3CNTs/CS composite effectively absorbed oil with a capacity of up to 18.24 times its own weight and selectively separated oil/water mixtures and water-in-oil emulsions, achieving a separation efficiency of exceeding 97 % under vacuum pump conditions. This study not only introduces a novel approach for developing superoleophilic chitosan-based sponge-like composite materials, but also presents a promising strategy for selective oil absorption and efficient separation of water-in-oil emulsions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
文献相关原料
公司名称
产品信息
阿拉丁
Tetraethyl orthosilicate (TEOS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信