{"title":"Spectral extremal graphs for fan graphs","authors":"Loujun Yu , Yongtao Li , Yuejian Peng","doi":"10.1016/j.disc.2024.114391","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known result of Nosal states that a graph <em>G</em> with <em>m</em> edges and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><msqrt><mrow><mi>m</mi></mrow></msqrt></math></span> contains a triangle. Nikiforov [Combin. Probab. Comput. 11 (2002)] extended this result to cliques by showing that if <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><msqrt><mrow><mn>2</mn><mi>m</mi><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>r</mi><mo>)</mo></mrow></msqrt></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> be the graph obtained from a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by adding an edge to two vertices with distance two, and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be the friendship graph consisting of <em>k</em> triangles that share a common vertex. Recently, Zhai, Lin and Shu [European J. Combin. 95 (2021)], Sun, Li and Wei [Discrete Math. 346 (2023)], and Li, Lu and Peng [Discrete Math. 346 (2023)] proved that if <span><math><mi>m</mi><mo>≥</mo><mn>8</mn></math></span> and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In this paper, we give a unified extension by showing that such a graph contains a copy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is the join of a vertex and a path on four vertices. Our result extends the aforementioned results since <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are proper subgraphs of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. In addition, we prove that if <span><math><mi>m</mi><mo>≥</mo><mn>33</mn></math></span> and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msqrt></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. This confirms a conjecture on the friendship graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. Finally, we conclude some spectral extremal graph problems concerning the large fan graphs and wheel graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114391"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24005223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A well-known result of Nosal states that a graph G with m edges and contains a triangle. Nikiforov [Combin. Probab. Comput. 11 (2002)] extended this result to cliques by showing that if , then G contains a copy of . Let be the graph obtained from a cycle by adding an edge to two vertices with distance two, and let be the friendship graph consisting of k triangles that share a common vertex. Recently, Zhai, Lin and Shu [European J. Combin. 95 (2021)], Sun, Li and Wei [Discrete Math. 346 (2023)], and Li, Lu and Peng [Discrete Math. 346 (2023)] proved that if and , then G contains a copy of and , respectively, unless . In this paper, we give a unified extension by showing that such a graph contains a copy of , where is the join of a vertex and a path on four vertices. Our result extends the aforementioned results since and are proper subgraphs of . In addition, we prove that if and , then G contains a copy of , unless . This confirms a conjecture on the friendship graph in the case . Finally, we conclude some spectral extremal graph problems concerning the large fan graphs and wheel graphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.