Spectral extremal graphs for fan graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Loujun Yu , Yongtao Li , Yuejian Peng
{"title":"Spectral extremal graphs for fan graphs","authors":"Loujun Yu ,&nbsp;Yongtao Li ,&nbsp;Yuejian Peng","doi":"10.1016/j.disc.2024.114391","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known result of Nosal states that a graph <em>G</em> with <em>m</em> edges and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>&gt;</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></math></span> contains a triangle. Nikiforov [Combin. Probab. Comput. 11 (2002)] extended this result to cliques by showing that if <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>&gt;</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mo>(</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>r</mi><mo>)</mo></mrow></msqrt></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> be the graph obtained from a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by adding an edge to two vertices with distance two, and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be the friendship graph consisting of <em>k</em> triangles that share a common vertex. Recently, Zhai, Lin and Shu [European J. Combin. 95 (2021)], Sun, Li and Wei [Discrete Math. 346 (2023)], and Li, Lu and Peng [Discrete Math. 346 (2023)] proved that if <span><math><mi>m</mi><mo>≥</mo><mn>8</mn></math></span> and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively, unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In this paper, we give a unified extension by showing that such a graph contains a copy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is the join of a vertex and a path on four vertices. Our result extends the aforementioned results since <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are proper subgraphs of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>. In addition, we prove that if <span><math><mi>m</mi><mo>≥</mo><mn>33</mn></math></span> and <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></msqrt></math></span>, then <em>G</em> contains a copy of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∨</mo><mfrac><mrow><mi>m</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. This confirms a conjecture on the friendship graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. Finally, we conclude some spectral extremal graph problems concerning the large fan graphs and wheel graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114391"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24005223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A well-known result of Nosal states that a graph G with m edges and λ(G)>m contains a triangle. Nikiforov [Combin. Probab. Comput. 11 (2002)] extended this result to cliques by showing that if λ(G)>2m(11/r), then G contains a copy of Kr+1. Let Ck+ be the graph obtained from a cycle Ck by adding an edge to two vertices with distance two, and let Fk be the friendship graph consisting of k triangles that share a common vertex. Recently, Zhai, Lin and Shu [European J. Combin. 95 (2021)], Sun, Li and Wei [Discrete Math. 346 (2023)], and Li, Lu and Peng [Discrete Math. 346 (2023)] proved that if m8 and λ(G)12(1+4m3), then G contains a copy of C5,C5+ and F2, respectively, unless G=K2m12K1. In this paper, we give a unified extension by showing that such a graph contains a copy of V5, where V5=K1P4 is the join of a vertex and a path on four vertices. Our result extends the aforementioned results since C5,C5+ and F2 are proper subgraphs of V5. In addition, we prove that if m33 and λ(G)1+m2, then G contains a copy of F3, unless G=K3m33K1. This confirms a conjecture on the friendship graph Fk in the case k=3. Finally, we conclude some spectral extremal graph problems concerning the large fan graphs and wheel graphs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信