On the maximum second eigenvalue of outerplanar graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
George Brooks , Maggie Gu , Jack Hyatt , William Linz , Linyuan Lu
{"title":"On the maximum second eigenvalue of outerplanar graphs","authors":"George Brooks ,&nbsp;Maggie Gu ,&nbsp;Jack Hyatt ,&nbsp;William Linz ,&nbsp;Linyuan Lu","doi":"10.1016/j.disc.2025.114416","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed positive integer <em>k</em> and a graph <em>G</em>, let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the <em>k</em>-th largest eigenvalue of the adjacency matrix of <em>G</em>. In 2017, Tait and Tobin <span><span>[24]</span></span> proved that the maximum <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among all outerplanar graphs on <em>n</em> vertices is achieved by the fan graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. In this paper, we consider a similar problem of determining the maximum <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> among all connected outerplanar graphs on <em>n</em> vertices. For <em>n</em> even and sufficiently large, we prove that the maximum <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is uniquely achieved by the graph <span><math><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>−</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>, which is obtained by connecting two disjoint copies of <span><math><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> through a new edge joining their smallest degree vertices. When <em>n</em> is odd and sufficiently large, the extremal graphs are not unique. The extremal graphs are those graphs <em>G</em> that contain a cut vertex <em>u</em> such that <span><math><mi>G</mi><mo>∖</mo><mo>{</mo><mi>u</mi><mo>}</mo></math></span> is isomorphic to <span><math><mn>2</mn><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. We also determine the maximum <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> among all 2-connected outerplanar graphs and asymptotically determine the maximum of <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among all connected outerplanar graphs for any fixed <em>k</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114416"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500024X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a fixed positive integer k and a graph G, let λk(G) denote the k-th largest eigenvalue of the adjacency matrix of G. In 2017, Tait and Tobin [24] proved that the maximum λ1(G) among all outerplanar graphs on n vertices is achieved by the fan graph K1Pn1. In this paper, we consider a similar problem of determining the maximum λ2 among all connected outerplanar graphs on n vertices. For n even and sufficiently large, we prove that the maximum λ2 is uniquely achieved by the graph (K1Pn/21)(K1Pn/21), which is obtained by connecting two disjoint copies of (K1Pn/21) through a new edge joining their smallest degree vertices. When n is odd and sufficiently large, the extremal graphs are not unique. The extremal graphs are those graphs G that contain a cut vertex u such that G{u} is isomorphic to 2(K1Pn/21). We also determine the maximum λ2 among all 2-connected outerplanar graphs and asymptotically determine the maximum of λk(G) among all connected outerplanar graphs for any fixed k.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信